End member models for Andean Plateau uplift

J.B. Barnes, T.A. Ehlers

Department of Geological Sciences, University of Michigan, 1100N. University Ave, Ann Arbor, MI 48109-1005, USA

ABSTRACT

Diverse techniques have been applied over the past decade to quantify the uplift history of the central Andean Plateau (AP). In this study, opposing models for surface uplift are evaluated including: a rapid rise of ∼2.5 km ∼10–6 Ma and a slow and steady rise since ∼40 Ma. These end member models are evaluated by synthesizing observations of the AP lithosphere and the history of deformation, sedimentation, exhumation, magmatism, uplift, and fluvial incision. Structural and geophysical studies estimate variable shortening magnitudes (∼530–150 km) involving cover-to-basement rocks, an isostatically-compensated thick crust (∼80–65 km), high heat flow, and zones of variable velocity and attenuation in the crust and mantle. These observations have invoked interpretations such as a hot/weak lithosphere, partial melt, crustal flow, and perhaps current, localized delamination, but do not provide strong support for massive delamination required by the rapid uplift model. Deformation and associated exhumation began ∼60–40 Ma and generally migrated eastward with consistent long-term average shortening rates (∼12–8 mm/yr) in Bolivia, favoring the slow uplift model. Volcanic and helium isotope evidence show an AP-wide zone of shallow mantle melting and thin lithosphere that has existed since ∼25 Ma, which is inconsistent with the rapid rise model that suggests lithospheric thinning occurred 10–6 Ma. Paleoaltimetry data suggest a rapid ∼2.5 km elevation gain 10 to 6 Ma, but are equally consistent within error with a linear rise since ≥25 Ma. Widespread fluvial incision (2.5–1 km) occurred along the western flank since ∼11–8 Ma and may be associated with surface uplift as proposed by the rapid rise model. However, the paleoaltimetry and incision data can also be explained by regional climate change associated with plateau uplift. Implications of these results for reconstructions of AP evolution are that: (1) substantial deformation of a weak lithosphere is essential, (2) AP growth has taken significantly longer (≥40 Myr) and was more uniform along strike (∼1500 km) than previously appreciated, and (3) the slow and steady uplift model is most consistent with available constraints. We conclude that the rapid uplift model may be an overestimate and that a more protracted Cenozoic uplift history is tenable.

© 2009 Elsevier B.V. All rights reserved.

Contents

1. Introduction .. 118
2. Geologic setting .. 118
3. Rapid and recent vs. slow and steady deformation and uplift .. 121
3.1. Geologic model 1: Punctuated deformation .. 121
3.2. Geologic model 2: Continuous deformation .. 121
3.3. End member uplift model 1: Rapid and recent .. 121
3.4. End member uplift model 2: Slow and steady .. 121
4. Cenozoic structure and evolution of the Andean Plateau ... 122
4.1. Structure of the lithosphere .. 122
4.1.1. Structure of the upper crust .. 122
4.1.2. Structure of the crust and mantle .. 124
4.2. Cenozoic deformation history ... 124
4.3. Cenozoic exhumation history ... 127
4.4. Cenozoic volcanic history and helium geochemistry .. 128

⁎ Corresponding author. Department of Geography & Institute of Hazard and Risk Research, Durham University, South Road, Durham, DH1 3LE, UK. Tel.: +44 191 33 43502; fax: +44 191 33 41801.
E-mail address: jason.barnes@durham.ac.uk (J.B. Barnes).
1 Present address: Institut für Geowissenschaften, Universität Tübingen, D-72074, Germany.

0012-8252/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.earscirev.2009.08.003
1. Introduction

The plateaus of Tibet and the central Andes are the largest tectonically active orogens. Despite this, the topographic, tectonic, and geodynamic evolution of orogenic plateaus remain imprecisely known and the focus of significant research. These plateaus are thought to influence local-to-far-field lithospheric deformation as well as global sediment flux, ocean chemistry, atmospheric circulation, precipitation, and climate change (Richter et al., 1992; Molnar et al., 1993; Masek et al., 1994; Lanters and Cook, 1995; Royden, 1996; Ruddiman et al., 1997; Sobel et al., 2003). In particular, numerous geologic observations have constrained the tectonomorphic evolution of the central Andean Plateau (see summaries in Isacks, 1988; Reutter et al., 1994; Allmendinger et al., 1997; Jordan et al., 1997; Kley et al., 1996; Gregory-Wodzicki, 2000; Kennan, 2000; Ramos et al., 2004; Barnes and Pelletier, 2006; Oncken et al., 2006b; Streecker et al., 2007; Kay and Coira, 2009), yet its history of uplift and consequently the associated geodynamic mechanisms of plateau development remain disputed (Garzione et al., 2006; Ghosh et al., 2006; Sempere et al., 2006; Garzione et al., 2007; Hartley et al., 2007; Hoke and Lamb, 2007; Ehlers and Poulsen, 2009).

A range of processes have been proposed for Andean Plateau (AP) growth (Fig. 1). These include: (1) magmatic addition (Thorpe et al., 1981; Kono et al., 1988), (2) distributed shortening (Isacks, 1988; Sheffels, 1995; Kley and Monald, 1998; McQuarrie, 2002b; Riller and Oncken, 2003; Gotberg et al., in press), (3) spatio-temporal variations in upper plate properties, plate interface, and subduction geometry (Jordan et al., 1983; Isacks, 1988; Gephart, 1994; Allmendinger and Gubbels, 1996; Kley et al., 1999; McQuarrie, 2002a; Lambe and Davis, 2003; Hoke and Lamb, 2007), (4) ablative subduction, crustal flow, and delamination (Kay et al., 1994; Lamb and Hoke, 1997; Pope and Willett, 1998; Husson and Sempere, 2003; Garzione et al., 2006; Schillig et al., 2007), (5) cratonic under-thrusting (Lamb and Hoke, 1997), and (6) spatio-temporal erosion gradients (Masek et al., 1994; Horton, 1999; Montgomery et al., 2001; Barnes and Pelletier, 2006; Streecker et al., 2007; McQuarrie et al., 2008b; Streecker et al., 2009). Previous progress in AP studies has eliminated processes like magmatic addition as important (e.g. Sheffels, 1990; Francis and Hawkesworth, 1994; Giese et al., 1999) and stressed the significance of shortening, thermal weakening, extrusion, and lithospheric thinning for plateau formation (e.g. Allmendinger et al., 1997; McQuarrie, 2002b; Willett and Pope, 2004). Furthermore, numerical models can reproduce first-order Andean Plateau-like morphologies when accounting for temperature-dependent viscosity variations in a thickening crust (Willett et al., 1993; Wdowinski and Bock, 1994b; Willett and Pope, 2004; Sobolev and Babeyko, 2005).

Despite these advances, the history of Andean Plateau surface uplift remains controversial. Resolving the uplift history is difficult because (1) inferring uplift from observations of shortening is difficult and rarely quantified (Jordan et al., 1997) as well as potentially inaccurate if deformation and uplift are decoupled, and (2) uncertainties associated with direct observations of the elevation history using paleoaltimetry techniques are often substantial (e.g. ± 1000 m, Gregory-Wodzicki, 2000). Furthermore, numerical models of plateau formation are limited by inadequate knowledge of the kinematics, timing, and rates of AP deformation and uplift as well as variability in the kinematic and chronologic history along strike. Shortcomings in our present understanding of central Andes evolution are, in part, the result of both a tendency to apply local solutions to the entire plateau and a lack of integration of all available data into testing models of AP growth.

The goal of this study is to test two end member models of Andean Plateau uplift by integrating a range of geologic observations that constrain its Cenozoic history. The end member models for uplift considered are: (1) a rapid and recent rise whereby ~2.5 km of elevation (>1/2 the current plateau height) was obtained during the late Miocene (~10 to 6 Ma) (Garzione et al., 2006) vs. (2) a slow and steady rise inferred to be commensurate with deformation (e.g. after Jordan et al., 1997) which began in the Paleocene–Eocene (~60–40 Ma) (e.g. McQuarrie et al., 2005). These models are evaluated by synthesizing the following constraints into a synoptic history: (1) the current structure of the lithosphere deduced from mapping, balanced cross sections, and geophysical studies, (2) the deformation history inferred from sedimentary basins, geochronology, and associated upper-crustal structures, (3) the deformation history estimated from rock exhumation, (4) the evolution of the mantle lithosphere and subduction geometry inferred from chronology and geochemistry of magmatism and helium emissions, (5) the uplift history constrained by marine sediments, paleobotany, biotaxa changes, paleoclimate proxies, erosion surfaces, and stable isotope paleoaltimetry, and (6) the history of fluvial incision into the plateau margins quantified from geomorphic, stratigraphic, and thermochronologic analyses. Within each section, we summarize the observations and highlight key consistencies, inconsistencies, interpretations and caveats. This study builds upon previous work by including: (a) reference to the large amount of literature published in the last decade, and (b) a wide variety of Earth Science disciplines that are not all integrated in previous reviews. The most important conclusions are that: (1) significant upper-plate deformation within a weak lithosphere is essential to AP growth, (2) AP development has taken significantly longer and was more uniform along strike than previously appreciated, and (3) the slow and steady end member uplift model is more consistent with available constraints.

2. Geologic setting

The central Andean (or Altiplano–Puna) Plateau (AP) is defined as the region >3 km in elevation in the core of the Andes at ~14–28°S in western South America (Fig. 1) (Isacks, 1988; Allmendinger et al.,
The AP spans \(\sim 1800 \) km north to south and \(\sim 200-450 \) km west to east. The AP overrides a normal, east-dipping (\(\sim 30^\circ \)) portion of the subducting Nazca plate between zones of flat slab subduction (Figs. 1 and 2). Cenozoic normal-to-oblique, E-directed subduction (e.g. Doglioni et al., 2007) in the central Andes has produced considerable magnitude and latitudinal variability in shortening (\(\sim 530-150 \) km) that has both bent the Bolivian orocline and contributed to AP uplift (Fig. 1A) (Isacks, 1988; McQuarrie, 2002a).

Neogene magmatism is distributed throughout both plateau flanks with Pliocene to recent volcanism concentrated along its western flank and non-existent above the flat slab zones to the north and south (Figs. 1 and 3) (e.g. de Silva, 1989a). Crust and mantle thicknesses beneath the plateau range from \(\sim 50-75 \) km and from 100–150 km, respectively (Beck et al., 1996; Whitman et al., 1996; Myers et al., 1998; Beck and Zandt, 2002). The AP is morphologically divided into the northern Altiplano \((\sim 3.7 \) km elevation, low relief) and the southern Puna \((\sim 4.2 \) km elevation, higher relief) (Fig. 1C).

The central Andes are divided into several tectonomorphic zones. From west to east they are: the Precordillera (PrC), the Western Cordillera (WC), the Altiplano–Puna (AL/PU) basin, the Eastern Cordillera (EC), the Interandean zone (IA), and the Subandes (SA)/Santa Barbara Ranges (SB)/Sierras Pampeanas (SP) (Fig. 2A). The PrC and WC constitute the western AP flank, which is a faulted (Muñoz and Charrier, 1996; Victor et al., 2004), crustal-scale monocline of west-dipping Neogene sediments (Hoke et al., 2007). The PrC includes the Atacama basin which forms a westward concave bend in the AP margin at \(\sim 23^\circ \)S (Jordan et al., 2007). The WC is the modern volcanic arc and the western drainage divide of the Altiplano–Puna basin (Figs. 2 and 3). The

Fig. 1. The Andes of South America with particular focus on the central Andean Plateau. (A) Andes topography (CTOP030 1 km data set) with the central Andes margin (solid lines) restored sequentially back to \(\sim 70 \) Ma (dashed lines, dots, values = km shortening) and plate convergence data from McQuarrie (2002b). Elev = elevation. Flat-slab regions marked with black bars. (B) Central Andes topography (SRTM 90 m data set) with Andean Plateau extent (3 km contour = black line) after Isacks (1988). (C) 50 km swath-averaged S–N plateau topographic profile after Whitman et al. (1996). Profile location is line in part B.
Altiplano–Puna basin is the center of the AP and is made up of low-relief, closed depocenters filled with Cenozoic sediments, evaporates, and volcanics (Figs. 2 and 3) (e.g. Sobel et al., 2003; Placzek et al., 2006; Strecker et al., 2007). The eastern AP margin is occupied by the thick-to-thin skinned central Andean fold–thrust belt (AL/EC/IA/SA) (e.g. McQuarrie, 2002b). The EC is the highest relief zone consisting of deformed Paleozoic sediments and Precambrian metamorphic rocks with overlying Cenozoic volcanics and is the eastern Altiplano–Puna drainage divide (Figs. 1B and 3). North of ∼23°S, the IA and SA step progressively downwards in topographic elevation and upwards in structural depth eastward exposing mostly Devonian and Carboniferous through Mesozoic and Cenozoic rocks, respectively (Figs. 2 and 3) (e.g. Kley, 1996; McQuarrie, 2002b). South of ∼23°S, the IA and SA transition into high angle, reverse-faulted ranges and basement-cored uplifts of the Santa Barbara Ranges (Schmidt et al., 1995; Ramos et al., 2002) (Figs. 2 and 3). The morphological and structural transition from Altiplano to Puna is related to Precambrian to Mesozoic paleogeography and changes in the subduction geometry and lithospheric thickness (Allmendinger et al., 1997 and references therein).

3. Rapid and recent vs. slow and steady deformation and uplift

Recent debate about the history of AP uplift highlights inconsistencies between the documented deformation and surface uplift history (Eiler et al., 2006; Garzione et al., 2006; Ghosh et al., 2006; Sempere et al., 2006; Garzione et al., 2007; Hartley et al., 2007). Current and contrasting geologic and uplift models for the AP provide an important framework for how the various data sets are synthesized in this paper to address this debate. Here we outline two current geologic models and two end member uplift models of AP evolution. We note a third geologic model also exists that emphasizes the Nazca–South American plate dynamics and interface (Oncken et al., 2006a), but does not support either uplift model and hence we exclude further description here for brevity yet include it in the discussion later in Section 5.
3.1. Geologic model 1: Punctuated deformation

Early characterization of Andean orogeny identified several major punctuated deformation events: the late Cretaceous Peruvian, the late Eocene Incaic, and the late Miocene Quechua phases (Megard, 1987; Sempere et al., 1990; Noblet et al., 1996). The latter two deformation phases correlate with periods of rapid plate convergence reconstructed from seafloor magnetic anomalies and reconstructions of the western coastline (James and Sacks, 1999). Isacks (1988) proposed an AP geologic model consistent with these notions that has two distinct stages. Stage 1 is pure shear, late Oligo-Miocene (~27–10 Ma) Quechua deformation and thickening in the Altiplano and Eastern Cordillera accompanied by lithospheric weakening due to lower-angle subduction hydrating the overlying mantle lithosphere. During this stage, processes supposedly responsible for surface uplift included shortening and lower crustal flow (Husson and Sempere, 2003). Stage 2 is late Miocene to present (~10–0 Ma) simple shear deformation in the Subandes contemporaneous with lower crust thickening below the plateau (see also Gubbels et al., 1993; Allmendinger and Gubbels, 1996) and return to normal subduction geometry. During this stage, uplift is related to underplating of forearc material (Baby et al., 1997), lithospheric removal (e.g. Kay et al., 1994; Allmendinger et al., 1997), and under-thrusting of the Brazilian craton below the foreland (e.g. Barke and Lamb, 2006).

3.2. Geologic model 2: Continuous deformation

An alternative geologic model of central Andean orogenesis is characterized by mostly continuous simple shear deformation over a considerably longer time period (e.g. Noblet et al., 1996; Hartley et al.,...
and Poulsen, 2009). The fundamental difference of this model is that Elger et al., 2005; McQuarrie et al., 2005; Hoke and Lamb, 2007; Ehlers 3.4. End member uplift model 2: Slow and steady (e.g. Garzione et al., 2006; Ghosh et al., 2006).

The overall eastward propagation is consistent with the idea that orogens expand at their low topography margins because that is where the lithostatic load is minimum and the differential stress regime is most favorable for rock failure (Carminati et al., 2004). When combined with geodynamic models, this protracted deformation chronology has led to the suggestion that thickening and shortening facilitated removal of mantle lithosphere by ablative subduction and/or piecemeal delamination resulting from the return of mantle wedge corner flow associated with slab roll back (Pope and Willett, 1998; Beck and Zandt, 2002; McQuarrie et al., 2005). We emphasize that this continuous deformation model applies at the scale of the AP (10s Myr, 100–1000s km) and therefore allows for smaller-scale (Myr, 10s km) variations in space and time.

3.3. End member uplift model 1: Rapid and recent

Recent AP paleoaltimetry data combined with preserved paleosurfaces, flexural analysis, and estimates of mantle viscosity and deviatoric stresses have been used to advance a model of surface uplift characterized by a rapid and recent rise of ~2.5 km during the late Miocene (~10–6 Ma) triggered by large-scale mantle delamination of eclogized lower crust (Garzione et al., 2006; Ghosh et al., 2006; Molnar and Garzione, 2007; Garzione et al., 2008b; Hoke and Garzione, 2008). The fundamental implication of this model is that AP deformation and surface uplift are decoupled. This model predicts (and identifies supporting evidence for) at ~10 Ma: (a) a geomorphic response to the rapid uplift in the form of plateau flank incision, and (b) that rapid uplift coincided with a decrease in the rate of Nazca–South America plate convergence, a cessation of deformation within the Altiplano, and initial propagation of deformation and enhanced shortening rates in the SA (e.g. Garzione et al., 2006; Ghosh et al., 2006).

3.4. End member uplift model 2: Slow and steady

Significant geologic evidence as well as alternative interpretations of the paleoaltimetry data has been used to propose that AP rise was slow and steady since the late Eocene (~40 Ma) if not earlier (e.g. Elger et al., 2005; McQuarrie et al., 2005; Hoke and Lamb, 2007; Ehlers and Poulsen, 2009). The fundamental difference of this model is that deformation and surface uplift are decoupled because the dominant mode of Andean crustal thickening is shortening (e.g. Jordan et al., 1997). The main arguments for this model are that (a) substantial sedimentological, structural, and volcanic observations show significant pre-late Miocene deformation which implies substantial crustal thickness and presumably some elevation prior to 20–10 Ma (Sempere et al., 2006; Hartley et al., 2007), (b) within error, the paleoaltimetry data are not very precise (e.g. Hartley et al., 2007), and (c) the older stable-isotope based paleoaltimetry samples may be underestimates of the true paleoelevation due to such effects as seasonality and evaporative enrichment (Hartley et al., 2007), burial diagenesis (Sempere et al., 2006), and/or past climate change as the plateau grew to its current height (Ehlers and Poulsen, 2009). Responses to these concerns have been provided for evaporative enrichment (Garzione et al., 2007) and burial diagenesis (Eiler et al., 2006). Finally, it is possible delamination was cyclic and hence uplift has been coupled to shortening, crustal thickening, and lithospheric removal over 10s Myr timescales (DeCelles et al., 2009).

4. Cenozoic structure and evolution of the Andean Plateau

In this section, we summarize, illustrate, and tabulate previous AP studies into the following subsections: (1) present-day lithospheric structure and the Cenozoic history of; (2) deformation and sedimentation, (3) exhumation, (4) magmatism and geothermal helium emissions, (5) uplift, and (6) fluvial incision. In each subsection, we synthesize the observations, outline key interpretations and caveats, highlight important insights, and identify which end member uplift model is better supported where possible.

4.1. Structure of the lithosphere

Many studies have been conducted to gain insight into the modern structure of the AP lithosphere (Fig. 2; Table 1). For example, (a) balanced cross sections, their restorations, and shortening estimates provide insight into the mode, style, geometry, and amount of AP deformation (e.g. Allmendinger et al., 1997; Kley and Monaldi, 1998; McQuarrie, 2002b), (b) earthquakes constrain the location of the subducting Nazca plate (e.g. Cahill and Isacks, 1992), (c) subsurface seismic velocity variations can be interpreted in terms of lithosphere structure (e.g. Dorbath et al., 1993; Whitman et al., 1996; Beck and Zandt, 2002), and (d) heat flow densities provide approximations of the lithospheres’ thermal structure (e.g. Springer, 1999). We chose to exclude magnetotelluric and electromagnetic studies in this compilation for brevity (e.g. Schwarz et al., 1994; Schwarz and Kruger, 1997; Soyer and Brasse, 2001).

4.1.1. Structure of the upper crust

Many studies have constrained the style, and magnitude of crustal shortening in the central Andean fold-thrust belt (e.g. Roeder, 1988; Sheffels, 1990; Baby et al., 1995; Dunn et al., 1995; Roeder and Chamberlain, 1995; Welsink et al., 1995). Basement structures kinematically link the Altiplano portion of the AP to its eastern thrust belt margin (Fig. 2D) (e.g. Kley, 1999). These basement structures have controlled the thrust belts’ physiography, short wavelength (~10 km) deformation, and high magnitude shortening (~350 km) in a thick (~8–15 km) sedimentary wedge (Kley, 1996; Kley and Monaldi, 1998; Kley, 1999; McQuarrie and DeCelles, 2001; McQuarrie, 2002b; McQuarrie et al., 2005; McQuarrie et al., 2008a).

An upper basement structure is recognized (a) to be responsible for most of the present Altiplano crustal thickness and hence presumably some of its elevation as well and (b) as a proxy for establishment of the present-day AP width in Bolivia (McQuarrie, 2002b; Barnes et al., 2006, 2008). However, disagreement exists about the precise geometries of the ramp–flat thrust sheets in the basin (e.g. compare McQuarrie, 2002b; Müller et al., 2002; Elger et al., 2005). Regardless, the various geometries are more similar in outcome than is commonly appreciated. First, they construct thrusts with similar aspect ratios (~2:1 to 1:1.5) and detachment depths (~15 and 25 km) and hence make similar assumptions about the depth to the brittle–ductile transition (McQuarrie et al., 2008a). Second, the style of basement strain does not affect estimates of shortening magnitude which are generally large in the central Andean fold–thrust belt (Altiplano to Chaco foreland in Bolivia: ~285–330 km) (McQuarrie et al., 2005).

The high angle reverse fault-bounded, basement-cored ranges, and intermontane basins of the Puna portion of the AP are characterized by long wavelength (~10–30 km) deformation and lower magnitude shortening (~150 km; Fig. 1A) in a thinner clastic wedge (Coutand et al., 2001; McQuarrie, 2002a). The along-strike changes in structural
Table 1

<table>
<thead>
<tr>
<th>Location</th>
<th>Methods</th>
<th>Results</th>
<th>Interpretations</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4°-22°S</td>
<td>Terrestrial heat flow measurements</td>
<td>Values range from 50-80 mW/m²</td>
<td>High back arc heat flow</td>
<td>Henry and Pollack (1988)</td>
</tr>
<tr>
<td>4°-36°S</td>
<td>Earthquake locations and focal solutions</td>
<td>Depth to Wadati-Benioff zone</td>
<td>Flat slab subduction in Peru and south Chile/Argentina</td>
<td>Cahill and Isacks (1992)</td>
</tr>
<tr>
<td>23°-25°S</td>
<td>High-frequency mantle seismic wave attenuation</td>
<td>High Q, Qs, Q, south of 22°S, lower to north</td>
<td>AL mantle lithosphere in north, not in south</td>
<td>Whitman et al. (1992, 1996)</td>
</tr>
<tr>
<td>15°-18°S</td>
<td>Teleseismic and local tomography</td>
<td>Residual vel. increase at W. EC, Moho 66-50 km</td>
<td>Brazilian craton below western EC</td>
<td>Dorbath et al. (1993), Dorbath and Granet (1996)</td>
</tr>
<tr>
<td>21°-23°S</td>
<td>Seismic refraction</td>
<td>Crustal low vel. zones, 40-70 km crust</td>
<td>3 main crustal blocks; forearc, WC, and backarc</td>
<td>Wigger et al. (1994)</td>
</tr>
<tr>
<td>21°-23°S</td>
<td>Tomography from 2 1993 EQs in southern Bolivia</td>
<td>Vel. 5.9-8.4 km/s, 75-80 km crust</td>
<td>Thick felsic crust over high vel. mantle, no delam</td>
<td>Zandt et al. (1994)</td>
</tr>
<tr>
<td>10°-30°S</td>
<td>Topography, gravity, elastic plate flexure model</td>
<td>Effective elastic thickness (Te) 0-50 km</td>
<td>Te variation due to Brazilian craton</td>
<td>Watts et al. (1995)</td>
</tr>
<tr>
<td>20°S</td>
<td>Teleseismic tomography</td>
<td>High vel zone dipping east down 600 km</td>
<td>Subducting Nazca plate slab</td>
<td>Dorbath et al. (1996)</td>
</tr>
<tr>
<td>16°-20°S</td>
<td>P-S wave conversions, BANJO/SEDA</td>
<td>32-74 km crust, 60-65 km AL, 70-74 km WC/EC</td>
<td>Thick crust compensated by Aiyer isostasy</td>
<td>Beck et al. (1996)</td>
</tr>
<tr>
<td>16°-20°S</td>
<td>Tomography and attenuation BANJO/SEDA</td>
<td>High vel., Q, Qs in AL mantle, lower in EC, low in WC</td>
<td>Lithospheric mantle, partial melt in AL, delam</td>
<td>Myers et al. (1998)</td>
</tr>
<tr>
<td>21°-25°S</td>
<td>Local tomography PISCO</td>
<td>High vel. zone dipping east, high Vp/Vs mantle</td>
<td>Nazca slab, partially hydrated mantle</td>
<td>Graebel and Asch (1999)</td>
</tr>
<tr>
<td>21°-23°S</td>
<td>Teleseismic and local P-S wave conversions</td>
<td>Very low vel. zone at 19 km, 750-810 m thick</td>
<td>Sill-like magma body below APVC</td>
<td>Chmielowski et al. (1999)</td>
</tr>
<tr>
<td>21°-23°S</td>
<td>Seismic refraction profiles PISCO</td>
<td>18-23 km uppr crust, 35-45 mid crust, 70 km Moho</td>
<td>Old lower crust, partial melt down to Moho</td>
<td>Schmitz et al. (1999)</td>
</tr>
<tr>
<td>21°S</td>
<td>Compilation of geologic and geophysical studies</td>
<td>Well-imaged Nazca plate by EQs</td>
<td>WC melts at 15-150 km depths</td>
<td>Scheuber and Giese (1999)</td>
</tr>
<tr>
<td>15°-25°S</td>
<td>Compilation of geophysical studies</td>
<td>4-stage model of Andean subduction geometry</td>
<td>Variable subduction angle since Eocene</td>
<td>James and Sacks (1999)</td>
</tr>
<tr>
<td>21°-25°S</td>
<td>Compilation of geophysical studies</td>
<td>Moho constraints, crustal balance estimates</td>
<td>Root: 55% shortening, mantle hydration 20%, 25%/7</td>
<td>Giese et al. (1999)</td>
</tr>
<tr>
<td>16°-26°S</td>
<td>P-S wave conversions of teleseismic and local EQs</td>
<td>Mid-crust Atliplano Low Velocity Zone (ALVZ)</td>
<td>ALVZ at 20-40 km — partial melt, 40-75 km Moho</td>
<td>Yuan et al. (2000)</td>
</tr>
<tr>
<td>16°-20°S</td>
<td>Waveform modeling of 6 regional EQs</td>
<td>AL 60-65 km crust, south; lower relative vel.</td>
<td>Thick felsic crust, no high vel. lwr crust/partial melt</td>
<td>Swenson et al. (2000)</td>
</tr>
<tr>
<td>16°-23°S</td>
<td>Surface wave phases and velocities</td>
<td>Low vel. zones in AL upper crust</td>
<td>Partial melt — Los Frailes and AL mantle lithosphere</td>
<td>Baumont et al. (2002)</td>
</tr>
<tr>
<td>16°-22°S</td>
<td>P-S conversions and surface waves</td>
<td>74-30 km crust, mid-crustal low vel. zone</td>
<td>Felsic crust/decoupled in AL, craton below EC, delam</td>
<td>Beck and Zandt (2002)</td>
</tr>
<tr>
<td>17°-25°S</td>
<td>Teleseismic and local tomography</td>
<td>80-30 km crust, thickness-gravity correlation</td>
<td>100~30 km lith. AL/Puna, felsic-mafic crust, delam</td>
<td>Yuan et al. (2002)</td>
</tr>
<tr>
<td>20°-22°S</td>
<td>Attenuation tomography and electrical resistivity</td>
<td>Low Q, mid-lwr crust, good conductor below AL</td>
<td>AL mid-lwr crust partial melt, no shallow asthen</td>
<td>Haberland et al. (2003)</td>
</tr>
<tr>
<td>20°-25°S</td>
<td>Local EQ attenuation tomography</td>
<td>High Qp forearc, low Qs arc/backarc crust and mantle</td>
<td>Fluid injection into mantle wedge, partial melt</td>
<td>Schurr et al. (2003)</td>
</tr>
<tr>
<td>20°-23°S</td>
<td>Seismic reflection and various geophysics</td>
<td>East-dipping Nazca Reflector</td>
<td>Nazca dehydration, AL crust partial melt/decoupling</td>
<td>Oncken et al. (2003)</td>
</tr>
<tr>
<td>14°-33°S</td>
<td>Topography, gravity, 2D flexural analysis</td>
<td>Forearc/foreland rigidity, weak in high Andes</td>
<td>Due to thermal structure, thick felsic crust, craton</td>
<td>Tassara (2005)</td>
</tr>
<tr>
<td>22°-24°S</td>
<td>Local EQ tomography and attenuation: Atacama basin</td>
<td>High Qp and P wave velocity</td>
<td>High strength, cold lithospheric block</td>
<td>Schurr and Rietbrock (2004)</td>
</tr>
<tr>
<td>20°-25°S</td>
<td>Local EQ tomography PISCO/ANCORP/PUNA</td>
<td>Low vel. and high Qs WC/Puna, high Qp forearc</td>
<td>Delam below Puna</td>
<td>Schurr et al. (2006)</td>
</tr>
<tr>
<td>16°-25°S</td>
<td>Review of geophysics, petrophysics, and petrology</td>
<td>High Conductivity Zone (HCZ), below WC/AL</td>
<td>Partial melt below plateau, –20% by vol in HCZ</td>
<td>Schilling et al. (2006)</td>
</tr>
<tr>
<td>20°-26°S</td>
<td>Review of seismological studies</td>
<td>Compiled from other studies</td>
<td>Fluids and partial melt, delam below Puna</td>
<td>Asch et al. (2006)</td>
</tr>
<tr>
<td>21°S</td>
<td>Teleseismic tomography</td>
<td>AL Low Velocity Zone and extension below EC</td>
<td>Fluid migration, delam?, asthen wedge below</td>
<td>Heit et al. (2008)</td>
</tr>
<tr>
<td>23°-28°S</td>
<td>Isotasy and topographic wavelength calculations</td>
<td>Long vs. short wavelength topography</td>
<td>Long due to geodynamics, short due to climate</td>
<td>Streck et al. (2009)</td>
</tr>
</tbody>
</table>

EQ = earthquake; Qp = P wave attenuation; Qs = S wave attenuation; vel. = velocity; lwr = lower; w. = western; Vp = P wave velocity; Vs = S wave velocity; upp = upper; delam = delamination; asthen = asthenosphere; WC = Western Cordillera; AL = Altiplano; EC = Eastern Cordillera; APVC = Altiplano-Puna Volcanic Complex; lith = lithosphere.

style of the AP eastern margin are interpreted to be primarily controlled by pre-existing Paleozoic and Mesozoic structures and stratigraphy (Allmendinger et al., 1997). For example, the thin-skinned thrust belts (e.g. SA) occupy areas with major sedimentary cover (≥3 km thick) and minor basement deformation, reactivation of Mesozoic normal faults has favored thick-skinned thrust deforma-
deformation throughout the central Andes. The large amount of observed-to-inferred upper-crustal shortening (∼300–500 km) across the central Andes estimated with regionally balanced sections (e.g. McQuarrie et al., 2005) implies the lithosphere is thick and perhaps some of it has been recycled into the mantle. Unfortunately, these insights do not directly favor either end member uplift model because no particular mechanism (i.e. ablative subduction or delamination) for the recycling is required.

4.1.2. Structure of the crust and mantle

Many geophysical studies have described the basic structure of the AP lithosphere (Fig. 2 and Table 1). The WC, AL, and EC exhibit a positive geoid height, a negative Bouguer gravity anomaly, and elevated heat flow with locally positive, isostatic residual gravity anomalies in the central Altiplano and Eastern Cordillera (Froidevaux and Isacks, 1984; Henry and Pollack, 1988; Gotze et al., 1994; Hamza and Muñoz, 1996; Gotze and Kirschner, 1997; Springer and Forster, 1998; Scheuber and Giese, 1999; Springer, 1999; Hamza et al., 2007). The low gravity and high heat flow and topography are attributed to a thick crust (∼65–80 km) that is isostatically compensated below the AP which sits above a hot asthenospheric wedge (Fig. 2B) (Springer and Forster, 1998). The over-thickened plateau crust is composed of radiogenic, heat producing material that also contributes to the high regional heat flow. Bouguer gravity combined with topography data have been used to determine strong flexural rigidity (effective elastic thickness, Te ∼40 km) in the forearc and near the foreland in contrast to the high elevations, which are characterized by the opposite (Fig. 2B) (Watts et al., 1995; Tassara, 2005; Perez-Gussinye et al., 2008). These lithospheric strength variations are interpreted to be related to (a) the thermal structure and thickness of the felsic crust, (b) the age of the subducting oceanic lithosphere, and (c) proximity to the underplating Brazilian lithosphere from the east (Fig. 2 and Table 1).

In the early-mid 1990s, studies used intermediate depth (∼60 km) earthquakes and focal mechanisms to delineate a moderately-dipping (30° to the east) Wadati–Benioff zone (representing the Nazca plate) below the plateau flanked by regions of flat-slab subduction north of ∼14°S and south of ∼28°S (Fig. 1A) (Cahill and Isacks, 1992). P and S waves generated from within the Nazca plate showed significant attenuation in the upper mantle below the plateau south of ∼22°S relative to the north (Whitman et al., 1992). The interpretation was that the Altiplano had a thick mantle lithosphere whereas the Puna possessed a much thinner lithosphere perhaps due to delamination (key feature 2b) below the Altiplano and Puna (Table 1). Additional estimates of crustal thickness are similar to previous estimates (up to ∼80 km below the plateau tapering to ∼30 km in the foreland) and interpreted to be dominantly felsic to layered felsic-mafic in composition (e.g. Beck and Zandt, 2002; Yuan et al., 2002). Some studies infer that the Altiplano crust is decoupled (Beck and Zandt, 2002; Oncken et al., 2003) and that current, localized (and/or piecemeal) delamination of varying degrees has occurred or is in progress commensurate with along-strike gradients in crustal thickness at the AL–EC transition (Beck and Zandt, 2002). The high velocity upper mantle down to 120 km below the western EC is interpreted to be the western limit of the Brazilian craton (Fig. 2A; D) (e.g. Beck and Zandt, 2002). Location of the Brazilian craton is further defined by a W–E fast direction in shear-wave splitting east of 66°W, which contrasts with a N–S fast direction directly below the AL that is interpreted to be mantle flow (Bock et al., 1998; Polet et al., 2000). Fig. 2D summarizes these interpreted features below the AP in cross section ~20°S.

There are caveats to the interpretations of lithospheric structure that stem from the geophysical data. In general, topography depicts changes in relative seismic velocities and hence is less reliable at characterizing sharp boundaries especially for intra-crustal structures from teleseismic conversions. Resolution of tomographic images is usually dependable in the horizontal direction, but significantly less so in the vertical direction because that is parallel to the ray paths. For example, while the low and high mantle velocity regions below the AL and EC are certainly there, their vertical extent and any associated interpretation, such as lithospheric removal, is more tenuous (e.g. Fig. 2D). Furthermore, tomographic images are more reliable when they are constrained by local earthquakes rather than by teleseismic earthquakes. In either case, tomographic images are fundamentally limited by the frequency and spatial variability of earthquake sources.

The most well-constrained and consistent observations and interpretations (from multiple studies) of the AP lithosphere include: (1) the location of the subducting Nazca plate, (2) the variations in crustal and elastic thickness and seismic velocities and attenuation in both the crust and mantle, and (3) the western extent of the under-thrust Brazilian lithosphere below the AL–EC boundary (Fig. 2D). Unfortunately, the lithospheric variability of the AP possesses multiple interpretations and locations of high/low attenuation can be inconsistent between studies (e.g. compare Whitman et al., 1992; Beck and Zandt, 2002). Additional inconsistencies include whether or not the crust is entirely felsic (Zandt et al., 1994; Swenson et al., 2000; Beck and Zandt, 2002) or layered felsic-to-mafic (Yuan et al., 2002) and the presence (e.g. Schmitz et al., 1999; Yuan et al., 2000; Haberland et al., 2003; Schilling et al., 2006) or absence (Swenson et al., 2000) of partial melt within it. Even though these studies are not in the exact same locations, they emphasize variable observations and interpretations of the AP crust that imply large lateral variations within it.

A weakened lithosphere has been stressed as important in the evolution of the AP. However, the proposed weakening mechanisms are numerous (i.e. partial melting via fluid injection into the mantle wedge, proximity above the asthenospheric wedge and adjacent to the arc, and foundering of a mantle root (e.g. Isacks, 1988; Kley et al., 1999; Schurr et al., 2003; Asch et al., 2006; Oncken et al., 2006a; Schilling et al., 2006)). The relative roles of these various mechanisms and the extent and nature of delaminated mantle lithosphere below the AP remain poorly constrained by geophysics.

In summary, we suggest wholesale AP-wide delamination of the lower crust and upper mantle is an unlikely interpretation of available geophysical data. The geophysical data supports piecemeal and/or current, localized, delamination (i.e. under the AL–EC transition) (Beck and Zandt, 2002; Garzzone et al., 2008a), but does not provide
direct evidence of a massive late Miocene delamination event (such as
an imaged dense/cold block sinking within the asthenospheric
wedge). Therefore, the geophysical data provides somewhat more
support for the slow and steady AP uplift model.

4.2. Cenozoic deformation history

Numerous studies have integrated sediments, geochronology, and
structural data to constrain the chronology of Cenozoic upper-crustal
deformation in the AP (Figs. 4 and 5A; Table 2). For example, (a)
dating growth strata with magnetostratigraphy or 40Ar/39Ar dating of
interbedded tuffs provides time control on sedimentation synchro-
nous with deformation (e.g. Elger et al., 2005), (b) dating sediments
with palynology and detailing their provenance provides a proxy for
the time of source region deformation, uplift, and erosion (e.g. Horton
et al., 2002), and (c) foreland basin evolution is a proxy for the
location, chronology and propagation of deformation (e.g. DeCelles
and Horton, 2003). In this compilation, we chose to exclude the
literature of deformation magnitude and style that is devoid of
chronologic constraints for brevity (e.g. Roeder, 1988; Sheffels, 1990;
Baby et al., 1995; Dunn et al., 1995; Roeder and Chamberlain, 1995;
Welsink et al., 1995).

Deformation began as early as the Paleocene (~60 Ma) and
progressed from west to east across the central AP (Figs. 4 and 5;
Table 2). Deformation in the PrC/WC began in the Paleocene to mid-
Eocene (~60–35 Ma) (Hammerschmidt et al., 1992; Buddin et al.,
1993; Reutter et al., 1996; Kuhn, 2002; Victor et al., 2004; McQuarrie
et al., 2005; Arriagada et al., 2006; Oncken et al., 2006a; Roperch et al.,
2006; Jordan et al., 2007). Western AP flank deformation has been
ongoing since ~40–35 Ma in places (Kuhn, 2002; McQuarrie et al.,
2005).
Deformation moved into the EC in the mid-Eocene lasting until the late Miocene (~40–10 Ma) (Isacks, 1988; Sempere et al., 1990; Gubbels et al., 1993; Kennan et al., 1995; MacFadden et al., 1995; Allmendinger et al., 1997; Horton, 1998; McQuarrie, 2002b; DeCelles and Horton, 2003; Horton, 2005). Deformation propagated both eastward and westward from the EC since ~40 Ma in Bolivia (Herail et al., 1996; McQuarrie and DeCelles, 2001; Horton et al., 2002; McQuarrie, 2002b; Müller et al., 2002; Elger et al., 2005; McQuarrie et al., 2005; Uba et al., 2006). Eastward, deformation of the IA began in the early Miocene (~20 Ma) followed by the SA from the Miocene to today (~15–0 Ma) (McQuarrie, 2002b; Echavarria et al., 2003; McQuarrie et al., 2005; Uba et al., 2006; Uba et al., 2009). Westward from the EC, deformation of the Altiplano–Puna began in the earliest Oligocene (~30 Ma) and ceased in the Altiplano by late Miocene (~7 Ma) (Kennan et al., 1995; Lamb and Hoke, 1997; Coutand et al., 2001; Elger et al., 2005), but remains active within the Plio-Quaternary in the Puna (Allmendinger et al., 1989; Cladouhos et al., 1994; Marrett et al., 1994; Schoenbohm and Strecker, 2009). In the Argentine EC, late Eocene (~40 Ma) and early Miocene (~20–0 Ma) deformation is documented (Reynolds et al., 2000; Hongn et al., 2007; Mortimer et al., 2007; Carrapa and DeCelles, 2008). The sedimentary and kinematic history of the AL both suggest the modern width of the plateau was established by ~25–20 Ma after which most deformation ceased in the EC (Horton et al., 2002; McQuarrie, 2002b; Horton, 2005). Estimated shortening rates for the central Andean fold–thrust belt average ~10–8 mm/yr (McQuarrie et al., 2005), but range in space and time from 16 to <1 mm/yr (Elger et al., 2005; Oncken et al., 2006a). Finally, paleomagnetic data document Cenozoic counterclockwise rotations (~10–30°) north of the Bolivian orocline and clockwise rotations (~10–60°) south of the orocline (see summaries in Lamb, 2001; Roperch et al., 2006; Barke et al., 2007).

Several previous studies suggest initial deformation and sedimentation began in the Puna ~20 Ma which is significantly later than in the Altiplano (Allmendinger et al., 1997; Jordan et al., 1997; McQuarrie, 2002a). However, the deformation history compiled here suggests the Puna has experienced widespread and relatively continuous deformation and sedimentation both within and along its margins since ~40 Ma, perhaps even earlier along the western flank suggestive of deformation propagating eastward since the Paleocene (~60 Ma) (Fig. 5; Table 2) (Marrett et al., 1994; Coutand et al., 2001; Arriagada et al., 2006; Coutand et al., 2006; Hongn et al., 2007; Carrapa and DeCelles, 2008).

The paleomagnetic rotation data have been used to argue both for (Kono et al., 1985; Isacks, 1988; Roperch et al., 2006; Barke et al., 2007) and against (Kley, 1999; Roperch et al., 2000) the Cenozoic bending of the Bolivian orocline. This bending is believed to be accommodated by the observed shortening gradients (Fig. 1A) (Lamb,
Table 2
Andean Plateau deformation studies using sediments, geothermochronology, and structure.

<table>
<thead>
<tr>
<th>Letter</th>
<th>Methods</th>
<th>Age in Ma (location)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Magstrat., seismic, growth strata, bal. sections</td>
<td>9–0 (SA; northernmost Argentina)</td>
<td>Echavarria et al. (2003)</td>
</tr>
<tr>
<td>B</td>
<td>K/Ar(b, fspar, glss) and Ar/Ar(b,hbl) of volcanoclastics, seismic, growth strata, bal. sections</td>
<td>33–27 and 19–8 (AL: Khunayuni-Uyuní Fault Zone/Lipez basin)</td>
<td>Elger et al. (2005)</td>
</tr>
<tr>
<td>C</td>
<td>Ar/Ar(hbl, b) of volcanoclastics, stratigraphy, seismic</td>
<td>30–5 (Prc)</td>
<td>Victor et al. (2004)</td>
</tr>
<tr>
<td>D</td>
<td>Ar/Ar(hbl, b, plag, wr) of volcanoclastics, kinematic data</td>
<td>17–1 (Pu)</td>
<td>Marrett et al. (1994)</td>
</tr>
<tr>
<td>E</td>
<td>Ar/Ar(b) of volcanoclastics, kinematic data</td>
<td>15–0 (Pu/LAl)</td>
<td>Cladouhos et al. (1994)</td>
</tr>
<tr>
<td>F</td>
<td>K/Ar(b, wr) of volcanoclastics, kinematic data</td>
<td>29–10 (EC: Tupiza area basins)</td>
<td>Herral et al. (1996)</td>
</tr>
<tr>
<td>G</td>
<td>Ar/Ar(b, kspar) of volcanoclastics, basins stratigraphy</td>
<td>40 and ≥ 25–21 (EC)</td>
<td>Horton (2005)</td>
</tr>
<tr>
<td>H</td>
<td>Ar/Ar(b) of tuffs, growth strata, stratigraphy</td>
<td>30–14 (EC: Tupiza basins)</td>
<td>Horton (1998)</td>
</tr>
<tr>
<td>I</td>
<td>Sediment provenance and stratigraphy</td>
<td>40–23 (AL)</td>
<td>Horton et al. (2002)</td>
</tr>
<tr>
<td>J</td>
<td>Synthesized biochronology, K/Ar(b, m, kspar, wr), magstrat.</td>
<td>27–19 (AL/EC)</td>
<td>Sempere et al. (1990)</td>
</tr>
<tr>
<td>L</td>
<td>Synthesis of structural, stratigraphic, and thermochronologic data</td>
<td>≥ 45 (WC), 40–20 (EC), 20–0 (IA and SA)</td>
<td>McQuarrie et al. (2005)</td>
</tr>
<tr>
<td>M</td>
<td>Kinematics linked to sediments, stratigraphy, and thermochronology</td>
<td>40–20 (EC), 20–0 (IA and SA)</td>
<td>McQuarrie (2002a,b)</td>
</tr>
<tr>
<td>N</td>
<td>Subsurface stratigraphy and correlation, structure, seismic</td>
<td>40–1 (Prc: Atacama basin)</td>
<td>Jordan et al. (2007)</td>
</tr>
<tr>
<td>O</td>
<td>Stratigraphy, seismic, structure, detrital FT(ap)</td>
<td>6–0 (SP: El Cajon and Campo Arenal)</td>
<td>Mortimer et al. (2007)</td>
</tr>
<tr>
<td>P</td>
<td>Structure, stratigraphy, growth strata, paleontology</td>
<td>40 (EC: Cálchaqui Valley)</td>
<td>Hongs et al. (2007)</td>
</tr>
<tr>
<td>Q</td>
<td>K/Ar(b, wr) and Ar/Ar(b, plag), stratigraphy, growth strata, structure</td>
<td>26–8 (Prc: Aroma region)</td>
<td>Farias et al. (2005)</td>
</tr>
<tr>
<td>R</td>
<td>Structure, stratigraphy, detrital FT(ap), U-Pb(zr)</td>
<td>20–0 (EC: Angastaco basin)</td>
<td>Coutand et al. (2006)</td>
</tr>
<tr>
<td>S</td>
<td>K/Ar(b, fspar, hbl), stratigraphy</td>
<td>40–25 (EC), 25–7 (AL)</td>
<td>Kemn et al. (1995), Lamb and Hoke (1997)</td>
</tr>
<tr>
<td>T</td>
<td>Ar/Ar(b, hbl) of volcanoclastics</td>
<td>-38 (Prc)</td>
<td>Hammerschmidt et al. (1992)</td>
</tr>
<tr>
<td>U</td>
<td>K/Ar and Ar/Ar(b, m, amphi, kspar, wr, sn, glss, fspar, plag) of volcanoclastics</td>
<td>-387 and 28–0 (Pb: Salar de Antofalla area)</td>
<td>Kraemer et al. (1999)</td>
</tr>
<tr>
<td>V</td>
<td>Structure and synthesized chronostratigraphy</td>
<td>40–0 (WC: SE Atacama margin)</td>
<td>Kuhn (2002)</td>
</tr>
<tr>
<td>W</td>
<td>Ar/Ar(b, hbl) and K/Ar(b, fspar, glss) of volcanoclastics, kinematic data, bal. sections</td>
<td>40–30–10 (EC: Atocha, Mochara, and Yunchur segments)</td>
<td>Müller et al. (2002)</td>
</tr>
<tr>
<td>X</td>
<td>Structure, kinematic data, radiometric age data of volcanics, mylonites, mineral alteration</td>
<td>-35 (Prc: Chuchuquitama)</td>
<td>Reutter et al. (1996)</td>
</tr>
<tr>
<td>Y</td>
<td>Detrital FT(ap) and modeling, stratigraphy, sedimentology, provenance, detrital U-Pb(zr)</td>
<td>40–0 (Pu: Salar de Potosi Grandes)</td>
<td>Carrara and DeCelles (2008), DeCelles et al. (2007)</td>
</tr>
<tr>
<td>Z</td>
<td>Seismic wells, stratigraphic correlation, growth strata</td>
<td>60–45 (Prc: Atacama basin)</td>
<td>Arriagada et al. (2006)</td>
</tr>
<tr>
<td>A1</td>
<td>Magstrat., sediment provenance</td>
<td>15–0 (EC/SB: Sierra de Gonzalez)</td>
<td>Reynolds et al. (2000)</td>
</tr>
<tr>
<td>A2</td>
<td>Stratigraphy, seismic, well logs, biostratigraphy</td>
<td>25–0 (SA: foreland deposits)</td>
<td>Uba et al. (2005, 2006)</td>
</tr>
<tr>
<td>A3</td>
<td>Stratigraphy, structure, kinematics, U-Pb(zr), age data of volcanics</td>
<td>< 3.5–7 (Pb: SE: southern Punu margin)</td>
<td>Schindler et al. (2009)</td>
</tr>
<tr>
<td>A4</td>
<td>Structure, kinematics, Ar/Ar(san, b, kspar, fspar), He(ze, ap), FT</td>
<td>> 15–0 (Pc/Wc: southwest Peru)</td>
<td>Schindler et al. (2009)</td>
</tr>
</tbody>
</table>

* Keyed to Fig. 5A; ap = apatite; zr = zircon; m = muscovite; b = biotite; fspar = feldspar; kspar = potassium feldspar; hbl = hornblende; wr = whole rock; plag = plagioclase; san = sanidine; glss = glass; K/Ar = 40K/39Ar; Ar/Ar = 40Ar/39Ar; FT = fission track; magstrat. = magnetostratigraphy; bal. = balanced. Location abbreviations same as in Fig. 2.

2001; Riller and Oncken, 2003; Barke et al., 2007) and attests to the fact that the AP deformation has been 3-dimensional in nature. The distribution of outwread rotations from the plateau center at the orocline axis suggests that material has been extruded outwread along strike (e.g. Beck et al., 1994; Butler et al., 1995; Maffione et al., 2009).

In summary, the most important insights gained from AP sedimentation and deformation observations are: (1) continuous and mostly eastward-propagating deformation since the early Paleocene to mid-Eocene (~60–40 Ma), first along the western flank then migrating to the eastern flank at ~40 Ma, (2) the modern AP width was established by ~25–20 Ma, and (3) although shortening rates vary locally, long term averaged rates have been similar (~10–8 mm/yr) since ~40 Ma. The long time frame over which a relatively steady rate of deformation has been resolved is more consistent with the slow and steady uplift model.

4.3. Cenozoic exhumation history

Various studies have used low-temperature thermochronology (e.g. Reiners et al., 2005) in bedrock to chronicle AP exhumation (Fig. 5B). For example, (a) apatite fission-track thermochronology and inverse modeling provides quantification of upper-crustal cooling of rock samples from temperatures of ~60–120 °C (e.g. Alonso et al., 2006; Deeken et al., 2006; Ege et al., 2007), and (b) analysis of multiple thermochronometer systems (e.g. fission track, 40Ar/39Ar, U-Th/He) detail cooling histories sensitive to temperatures < ~350 °C (e.g. Barnes et al., 2006; Gillis et al., 2006; Carrapa et al., 2009).

Exhumation began as early as the Paleocene (~60 Ma) and progressed from west to east across the AP (Fig. 5B and Table 3; see Fig. 12.3 of Alonso et al. (2006) for a plot of apatite fission-track ages throughout the southern-central AP). Initial exhumation began in the PrC/WC in the Paleocene to mid-Eocene (~60–40 Ma) (Damm et al., 1990; Andriessen and Reutter, 1994; Maksae and Zentilli, 1999). Next, exhumation shifted into the EC in the mid-Eocene and continued until the early Miocene (~45–40 to ~20 Ma) (Benjamin et al., 1987; Farrar et al., 1988; Kontak et al., 1990; Coutand et al., 2001; Alonso et al., 2006; Barnes et al., 2006; Carrapa et al., 2006; Deeken et al., 2006; Gillis et al., 2006; Ege et al., 2007; Barnes et al., 2008; McQuarrie et al., 2008a). In the Altiplano, exhumation propagated both eastward and westward from the central EC since ~40 Ma (Ege et al., 2007; Barnes et al., 2008). Eastward, exhumation occurred in the IA from early to late Miocene (~20 to ~10–5 Ma) followed by the SA from mid-late Miocene to present (~15–0 Ma) (Moretti et al., 1996; Barnes et al., 2006; Scheuber et al., 2006; Ege et al., 2007; Barnes et al., 2008). In the Puna, the exhumation front migrated eastward into the Sierras Pampeanas in the late Miocene (10–5 Ma) (Coughlin et al., 1998; Sobel and Strecke, 2003). Westward from the EC, exhumation in the AL/PU began in the earliest Oligocene and continued into the Quaternary (~30–2 Ma) (Cladouhos et al., 1994; Carrapa et al., 2005; Barnes et al., 2006; Ege et al., 2007; Barnes et al., 2008), with mid-Miocene (~15 Ma) exhumation also recorded in the PrC (Damm et al., 1990). The EC experienced two distinct phases of exhumation; in Bolivia, during the late E-Oligocene (~40–20 Ma) and mid-late Miocene to recent (~15–0 Ma) (e.g. Barnes et al., 2006; Gillis et al., 2006), and in Argentina, during the
mid Eo-Oligocene (~50–30 Ma) and early Miocene (23–15 Ma) (Fig. 5B) (Carrapa et al., 2006; Deeken et al., 2006).

These exhumation histories have been used to reconstruct AP evolution by assuming that rock cooling is a proxy for deformation. This assumption is valid in regions where cooling related to volcanism or normal faulting can be ruled out. In convergent orogens, such as the central Andes, erosion is the primary exhumation mechanism (Ring et al., 1999; Ehlers, 2005). The basic logic is that the onset of the recorded, rapid erosional exhumation is a signature of deformation because it generates the topography and relief necessary to drive the erosion (e.g. Coughlin et al., 1998; Carrapa et al., 2005; Barnes et al., 2006; Ege et al., 2007). Some periods of recorded, rapid exhumation are considered only the result of enhanced erosion when combined with local geologic evidence (e.g. Gillis et al., 2006). However, exhumation may not be recorded if the deformation magnitude is insufficient to cause rock cooling from below the relevant thermochronometer system closure temperature.

The most important interpretation of the exhumation history relevant to AP uplift is that the modern width of the Altiplano plateau was established by ~20–15 Ma (Barnes et al., 2006, 2008; McQuarrie et al., 2008a). The early episode of EC exhumation (~50–20 Ma) is considered related to deformation all along the plateau margin from southern Peru to Argentina (Coutand et al., 2001; Deeken et al., 2006; Gillis et al., 2006; Ege et al., 2007; Barnes et al., 2008; McQuarrie et al., 2008b). The later episode of EC exhumation (~23–15 Ma) is considered to be associated with enhanced erosion in Bolivia perhaps related to climatic effects (Gillis et al., 2006; Barnes et al., 2008; McQuarrie et al., 2008b), whereas it is associated with deformation in Argentina (e.g. Deeken et al., 2006).

In summary, the compiled exhumation history does not favor either end member uplift model. However, these exhumation histories have been used to estimate long-term average shortening rates in Bolivia (~12–8 mm/yr) (Barnes et al., 2008; McQuarrie et al., 2008a) which are consistent with previous estimates (~10–8 mm/yr) (McQuarrie et al., 2005). Rapid uplift could induce increased plateau margin erosion, but the younger EC exhumation phase began earlier and with temporal variability along strike (~23–15 Ma vs. 10 Ma uplift; Fig. 5 and Table 3). Finally, the inference that the width of the AP formed early relative to when rapid uplift supposedly occurred (20–15 vs. 10 Ma) suggests plateau development could have been early enough to be consistent with the slow and steady uplift model.

4.4. Cenozoic volcanic history and helium geochemistry

Numerous studies have investigated the history of magmatism to quantify the volcanic activity and crustal evolution of the central Andes (Fig. 6; Table 4). For example, (a) field work and ^40Ar/^39Ar thermochronology provide detailed regional eruptive histories (e.g. Lебtti et al., 2006), (b) the onset of mafic volcanism can be used to infer delamination (e.g. Kay and Mahlburg Kay, 1993) and their geochemistry constrains their source parameters (e.g. Hoke and Lamb, 2007), and (c) compiled regional volcanism through space and time can test hypothesized linkages between deformation and subduction geometry (e.g. Trumbull et al., 2006; Kay and Coira, 2009). Here, we only mention studies that address the magmatic source and relationships between deformation, subduction geometry, and magmatism because they provide the most relevant insight into the evolution of the AP lithosphere and hence uplift.

The central Andes have been the locus of substantial magmatism since the Jurassic (Fig. 6). Towards the present, arc volcanism has propagated eastward with periods of punctuated quiescence (~10 Ma each) and progressively widened in W–E extent as indicated by the late-Oligocene to present (~25–0 Ma) distribution of igneous rocks (Fig. 6B) (Scheurer et al., 1994; Allmendinger et al., 1997). Only since ~3 Ma has the arc contracted to its modern W–E width of ~50 km in the WC (Fig. 6A) (Wörrner et al., 2000). Diversity of composition best describes the Oligocene-to-recent (~25–0 Ma) igneous rocks that range from basalt flow/cones and stratovolcano-derived andesites to voluminous, felsic, mostly caldera-derived rhyolites and ignimbrites (Fig. 6C; Table 4) (see also overviews by Trumbull et al., 2006; Hoke and Lamb, 2007; Kay and Coira, 2009). Arc productivity was limited prior to ~30 Ma, but increased ~25 Ma with more output south of 20°S that also decreased in age southward (Trumbull et al., 2006). Subduction has been advocated as the driver of magmatism with sources ranging from the mantle to substantial contamination via partial melting of the crust and/or magmatic differentiation (Table 4) (e.g. Thorpe et al., 1981; Allmendinger et al., 1997; Hoke and Lamb, 2007; Schnurr et al., 2007).

The most direct evidence of mantle melting, and hence inferences about lithosphere structure, comes from mafic magmatism and helium in natural gas emissions (Kay and Mahlburg Kay, 1993; Hoke and Lamb, 2007). Mafic magmatism is documented throughout the central-to-southern AP since ~25 Ma (Fig. 6C) (Davidson and de Silva, 1992; Davidson and de Silva, 1995; Lamb and Hoke, 1997). In the Puna,
Pliocene (~3–0 Ma) mafic volcanics combined with a regional stress field change and more attenuated seismic waves were used to argue for delamination (~3 Ma) (Kay and Mahlburg Kay, 1993; Kay et al., 1994). In contrast, in the Altiplano, variations in rare earth element concentrations from local mafic volcanics require most melting of mantle material from <90 km depth and modern geothermal helium emissions carry a mantle signature implying mantle melting today showing the progressive eastward shift of the arc since the Jurassic and its substantial widening at ~25 Ma (modified from Haschke et al., 2002b). (C) Altiplano magmatism since 30 Ma and modern geothermal helium emissions (modified from Hoke and Lamb, 2007). Note the widespread volcanism since ~25 Ma and the spatially coincident mantle melting signature of the helium data within the plateau. Symbols: dacite to rhyolite (+ ignimbrites; open circles), andesite (stars), mafics (basalts + shoshonites; black squares), granite (pluses), and helium measurements (closed circles).

The relationship between magmatism, deformation, and subduction has, and continues to be, important for conceptual models of AP evolution (e.g. James and Sacks, 1999; Trumbull et al., 2006; DeCelles et al., 2009; Kay and Coira, 2009). The notion that magmatism preconditioned the lithosphere for AP formation via thermal weakening (Isacks, 1988) has become circumspect because (1) deformation preceded volcanism (~40 Ma vs. ~25 Ma) (e.g. Sebrier and Soler, 1991; McQuarrie et al., 2005; Ege et al., 2007), and (2) even after volcanism began, deformation and magmatism have varied independently (Trumbull et al., 2006). Despite hypotheses to the contrary, magmatic productivity is also not correlated with subduction of the San Fernandez Ridge which has swept southwest across the AP since 26 Ma (Trumbull et al., 2006). However, subduction of the ridge has been important in the temporal variation in slab geometry and removal of lithosphere along strike of the AP (Kay and Coira, 2009). The chronology and geochemistry of Altiplano volcanics is consistent with lithospheric evolution involving (James and Sacks, 1999; Hoke and Lamb, 2007): (a) flat-slab subduction and limited volcanism ~35–25 Ma, (b) steepening slab dip, the onset of volcanism, and contemporaneous asthenospheric upwelling and perhaps mantle (and mafic lower crust) detachment ~25–21 Ma, and (c) continued mantle wedge corner flow and hydration and possible continuous or episodic removal of the leading edge of the under-thrusting Brazilian craton since ~21 Ma. However, there remains doubt about (1) how the variations in width, locations, and composition of the magmatism can accurately represent changing subduction geometries back through time (Trumbull et al., 2006) and (2) whether the early flat-slab stage is required (see discussion in Kay and Coira, 2009). Finally, a new model suggests that growth of the Andes Cordillera is characterized by cyclic surface magmatism, lithospheric removal, and uplift forced by the impingement of continental lithosphere behind the volcanic arc (DeCelles et al., 2009).
In summary, the most important insights from the magmatic history are that (1) maﬁc volcanics may indicate very recent delamination below the Puna ~3 Ma, and (2) the Altiplano lithosphere has been thin since ~25 Ma commensurate with initiation of widespread back-arc volcanism of variable compositions (Fig. 6C and Table 4). The recent and rapid uplift end member model is not consistent with either insight. Insight (2) supports slow and steady uplift by implying some amount of plateau elevation as a result of a thin lithosphere since ~25 Ma. The notion of cyclic Andean Cordillera magmatism, lithospheric loss, and growth also suggests cyclic elevation changes (DeCelles et al., 2009) which may be consistent with either uplift model depending on the timescale of interest and where in the cycle the central Andes are interpreted to be.

4.5. Cenozoic uplift history

Many types of information have been used to reconstruct the uplift history of the AP (Fig. 7 and Table 5). For example, (a) dated marine facies provide a paleo-elevation constraint of near sea level (e.g. Sempere et al., 1997), (b) perched erosion surfaces are important for estimating rock uplift (e.g. Barke and Lamb, 2006), and (c) paleoaltimetry techniques such as fossil ﬂoras (Gregory-Wodzicki et al., 1998; Meyer, 2007) and stable isotopes (Quade et al., 2007) provide paleo-elevation estimates. A previously compiled history of AP elevation suggested the AP reached ~25–30% of its modern elevation by early-mid Miocene and ~50% by ~10 Ma (Gregory-Wodzicki, 2000; see also Hartley, 2003).

Marine facies of the late Cretaceous El Molino Formation establishes the entire AP region at near sea level ~73–60 Ma prior to Andean orogenesis (e.g. Sempere et al., 1997). Remaining constraints support one of the following three simpliﬁed uplift histories for the AP: (1) signiﬁcant (~1 km) uplift prior to 10 Ma, (2) minor uplift (~1 km) prior to 10 Ma with most (~2.5 km) post 10 Ma, and (3) signiﬁcant uplift since ~25–20 Ma which unequivocally could support either history (1) or (2). We outline the constraints that support each simpliﬁed history here.

4.5.1. Signiﬁcant uplift pre-late Miocene (>10 Ma)

Paleobotanical evidence using the nearest-living-neighbor method at Corocoro and Potosi suggests 2–2.4 km of elevation prior to 11 Ma (5 and 6a in Table 5) (Singewald and Berry, 1922; Berry, 1939). Atacama Desert paleosols indicate a climate change to hyper-aridity 15–13 Ma implying >2 km elevation in the AP had induced a rain shadow by this time (9 in Table 5) (Rech et al., 2006). Highland biota changes suggest 2–2.5 km of elevation was reached by the early Miocene (~25–15 Ma) in southernmost Peru and by the mid-late Miocene (~16–11 Ma) at the northern end of the AP (21 in Table 5) (Picard et al., 2008).

4.5.2. Most uplift since the late Miocene (~10–0 Ma)

Reinterpretation of the Potosi locale using the foliar-physiognomic method at Corocoro and Potosi suggests ~1320 m elevation was attained by 21–14 Ma (6b in Table 5) (Gregory-Wodzicki, 2000). At Jakokkota, the same method suggests 600–1600 m elevation 11–10 Ma (7 in Table 5) (Gregory-Wodzicki, 2000). Analysis of the San Juan del Oro surface in the EC of southern Bolivia estimates 1.7 ± 0.7 km of rock uplift since 12–9 Ma (12 in Table 5). Stable isotopes from pedogenic carbonates suggest an elevation gain of ~2.7 ± 0.7 km 10.3–6.7 Ma (Fig. 7 and 13 in Table 5) (Ghosh et al., 2006; Garzione et al., 2007; Quade et al., 2007).

New structural and thermochronologic work outlines 2.4–3 km of uplift of the western AP margin in southwestern Peru since ~14 Ma (Schildgen et al., 2009).
4.5.3. Most uplift since the latest Oligocene (~25–0 Ma)

Paleobotanical evidence using the nearest-living-neighbor method from the Chucal Formation suggests only 1 km elevation 25–19 Ma (4 in Table 5) (Muñoz and Charrier, 1996). A 25 Myr-old abraded marine transgression surface in the Peruvian Precordillera now at significant elevation suggests 1100 m of uplift since 25 Ma (1 in Table 5) (Tosdal et al., 1984; Sebrier et al., 1988). Internal drainage development 24–14 Ma in the Puna implies uplifted regions of unknown elevation along both plateau flanks by this time (8 in Table 5) (Alonso et al., 1991; Vandervoort et al., 1995). The elevated Altos de Camilaca surface suggests 1100–1300 m of rock uplift in southern Peru since 25–187 Ma (11 in Table 5) (Tosdal et al., 1984; Quang et al., 2005) and monocline tilting and rock uplift of the western AP flank escarpment suggests 1700–2500 m of uplift since 19 Ma (19 in Table 5) (Wörner et al., 2002). Finally, structural, sedimentologic, and geophysical data combine to suggest ~2600 m of Precordillera rock uplift from 30–~5 Ma in northern Chile (22 in Table 5) (Victor et al., 2004).

4.5.4. Integrated uplift history

Indicators of paleoelevation at the greatest confidence suggest the AP surface was uplifted by ~2.5 in elevation since ~10 Ma (Fig. 7B, center of gray region; Table 5). Estimates from perched erosion surfaces imply 1–3 km of rock uplift with as much as 2.4 km since 12–9 Ma along the AP flanks (Barke and Lamb, 2006; see also Hoke and Garzione, 2008). Within 1σ/standard error, the paleoaltimetry data constrain the Altiplano elevation history as <~2 km elevation until ~11 Ma followed by a rapid rise from 0–2 km to the present elevation of ~3.8 km starting ~10 Ma (Fig. 7B, gray region; Table 5). Within 2σ/standard error, the paleoaltimetry data constrain the Altiplano elevation history as <~2.4 km elevation until ~18 Ma followed by either a rapid to steady rise from 0–2.4 km to the present elevation of ~3.8 km starting somewhere between ~18 and 10 Ma (Fig. 7B, dashed lines). While consideration of the errors highlights the potential for large flexibility in paleoerosion reconstructions, it does not factor in that at one time interval (~10–8 Ma; Fig. 7B) multiple methods suggest similar paleoelevations. We conservatively conclude that, within error, observations suggest something from a slow and steady rise of the Altiplano portion of the AP since ~25 Ma to a recent and rapid rise from ~1 km elevation ~10 Ma to its modern height of 3.8 km ~6 Ma (Fig. 7B; Table 5) (see also Hartley et al., 2007).

There are several caveats associated with the uplift and paleoelevation constraints. First, paleoaltimetry estimates from paleobotany done in the early 1900s are generally not accepted because so little was known about modern-to-ancient South American vegetation at...
that time (5 and 6 in Table 5) (Gregory-Wodzicki, 2000). Second, paleoclimate proxies and erosion studies often invoke far-a-field causes, which may be non-unique. For example, Rech et al. (2006) infer plateau height of >2 km far from their study location in the northern Atacama as a mechanism for the onset of aridity (Fig. 7). In fact, the traditional view of hyper-aridity (due to rain shadow development) by 14 Ma induced supergene oxidation and enrichment of porphyry copper deposits throughout the AP western flank in Peru and Chile (Alpers and Brimhall, 1988; Stillitoe and McKee, 1996) has recently been called into question with periodic evidence of enrichment since the mid-Eocene (~44 Ma) (Hartley and Rice, 2005; Quang et al., 2005; Arancibia et al., 2006). Third, rock uplift is not necessarily equivalent to surface uplift unless correction is made for the regional isostatic response to erosion (Table 5) (England and Molnar, 1990). Fourth, comparisons of leaf morphology to climate relationships between fractionation in modern meteoric water, elevation, and surface temperatures (Poage and Chamberlain, 2001; Bilslniak and Stern, 2005) may not be representative of the past. Uplift-induced changes in surface temperature, seasonal precipitation distribution, moisture source, and prevailing wind directions could have depleted the paleoprecipitation oxygen isotope concentration causing the δ^{18}O-derived paleoelevations to be underestimated once paleoclimate corrections to the data are considered (Fig. 7B) (Ehlers and Poulsen, 2009). The paleoclimate corrections shown in Fig. 7B were determined using regional climate models that account for variations in precipitation amount, vapor source, and temperature (see Ehlers and Poulsen, 2009 for details). Furthermore, the clumped 13C–18O paleoaltimetry is a nascent technique with some uncertainty (~±4 °C) (Quade et al., 2007).

In summary, the most important insights from the uplift constraints are that (1) much of the AP surface uplift from an initial elevation of ~1 km has occurred since ~25 Ma, and (2) consideration of the uncertainties associated with various climate sensitive paleoaltimetry data suggests observations are equally consistent with a slow and steady rise of the AP since ~25 Ma to a rapid rise at ~10 Ma (Fig. 7). Both of these summary points are equally consistent with either end member uplift model. Therefore, much of the paleoaltimetry data can be explained by surface uplift and/or climate change associated with plateau uplift (Ehlers and Poulsen, 2009).

4.6. Cenozoic incision history

Many studies have investigated the history of fluvial incision in the AP which can be a proxy for uplift (Fig. 8; Table 6). For example, (a) U-
Th)/He thermochronometry constrains the timing of canyon incision (e.g. Schildgen et al., 2007), and (b) erosion surface degradation or stratigraphic markers of known age provide a measure of the amount and timing of incision (Sebrier et al., 1988; Kennan et al., 1997; Thouret et al., 2007; Barnes and Heins, 2009).

The major observation from combining all incision estimates is that it was substantial and recent (2.5–1 km since ≤11–8 Ma) along the western Altiplano plateau flank (a–c, h–j in Table 6) (Sebrier et al., 1988; Kober et al., 2006; Schlunegger et al., 2006; Hoke et al., 2007; Schildgen et al., 2007; Thouret et al., 2007). Unfortunately, within error, in places incision magnitude could have been as little as ~1 km since ~10 Ma along the plateau flanks (Sebrier et al., 1988; Barke and Lamb, 2006; Hartley et al., 2007; Hoke et al., 2007) consistent with a slow and steady rise of ~4 km since ~40 Ma. In contrast, in other places the incision was a minimum of 2–2.4 km since ~10 Ma which is consistent with the rapid rise model (Schildgen et al., 2007; Thouret et al., 2007). Evidence also exists for earlier incision of ≥400 m 16–11 Ma in southern Peru (g in Table 6) (Sebrier et al., 1988) as well as tilting and incision of Atacama gravels starting ~15 Ma along the southern Puna (d in Table 6) (Mortimer, 1973; Riquelme et al., 2003). Evidence demonstrates minor incision of <450 m into the San Juan del Oro surface since ~3 Ma in the Bolivian EC (e in Table 6) (Kennan et al., 1997; Barnes and Heins, 2009).

Interestingly, different authors have suggested this surface has been incised ~2 km (Garziano et al., 2006), 800 m (Hartley et al., 2007), and 230 ± 90 m (Barke and Lamb, 2006) since ~10 Ma. Finally, it is worth noting that there is no evidence for significant incision along the southeastern Puna margin (e.g. Carrapa et al., 2006).

There are several mechanisms for AP flank incision that have been proposed. Proposed mechanisms include surface uplift (e.g. Sebrier et al., 1988; Servant et al., 1989; Gregory-Wodzicki, 2000; Schildgen et al., 2007) as the result of delamination (Garziano et al., 2006; Ghosh et al., 2006) or lower crustal flow (Schildgen et al., 2007; Thouret et al., 2007) as well as climate change producing higher river discharge (Ehlers and Poulsen, 2009). If surface uplift triggered incision, the incision depth is not necessarily equal to the amount of uplift unless it has been corrected for the isostatic response to erosion (Molnar and England, 1990). If climate change triggered incision it could, in turn, result in some regional uplift. Results from regional climate models predict wetter conditions on the western AP flank as the plateau rose suggesting the documented late Miocene to recent incision could be climate induced (Ehlers and Poulsen, 2009). Unfortunately, paleoclimate proxies in Chile indicate changes from semi-humid to arid conditions occurring simultaneously (e.g. both wet and dry climates) which suggests a climatic trigger for incision may be difficult to evaluate with observations (e.g. Gaupp et al., 1999; Hartley, 2003).

In summary, evidence shows considerable (2.5–1 km) incision along the western Altiplano flank since ~11–8 Ma, but the mechanism is unclear (Fig. 8 and Table 6). In contrast, there is no evidence for significant incision of the southeastern Puna margin (e.g. Carrapa et al., 2006). A surface uplift mechanism for incision would support the rapid rise uplift model whereas a climatic mechanism and/or the lower end of the range of incision magnitude (~1 km) would allow the documented canyon downcutting to be consistent with the slow and steady uplift model.

Table 6

Andean Plateau incision estimates.

<table>
<thead>
<tr>
<th>Letter</th>
<th>Methods</th>
<th>Age (Ma)</th>
<th>Amount (m)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Ar/Ar(b, fspar, gndmss) of volcanics</td>
<td>9–4</td>
<td>2000–2500</td>
<td>Thouret et al. (2007)</td>
</tr>
<tr>
<td>b</td>
<td>Ar/Ar(fspar, san, gndmss) of volcanics and He/ap, zr</td>
<td>9–5</td>
<td>1000</td>
<td>Schildgen et al. (2007)</td>
</tr>
<tr>
<td>c</td>
<td>Ar/Ar(fspar, san, gndmss) of volcanics and He/ap, zr</td>
<td>5–2</td>
<td>1400</td>
<td>Schildgen et al. (2007)</td>
</tr>
<tr>
<td>d</td>
<td>Erosion surfaces, stream profiles, U-Pb(zr), Ar/Ar(b)</td>
<td>10–0</td>
<td>>1000</td>
<td>Hoke et al. (2007)</td>
</tr>
<tr>
<td>e</td>
<td>Deposition, tilting, and incision of Atacama gravels</td>
<td>~15–0</td>
<td>7</td>
<td>Riquelme et al. (2003), Mortimer (1973)</td>
</tr>
<tr>
<td>f</td>
<td>Rio La Paz basin incision, FT(ap)</td>
<td>~5–0</td>
<td>2000–+</td>
<td>Barnes et al. (2006), McQuarrie et al. (2008a,b)</td>
</tr>
<tr>
<td>g</td>
<td>S1 flat paleotopography surface incision</td>
<td>16–11</td>
<td>≥400</td>
<td>Sebrier et al. (1988)</td>
</tr>
<tr>
<td>h</td>
<td>S2 paleovalley fillings/Tamarugal pediplain incision</td>
<td>11–5</td>
<td>~1000</td>
<td>Sebrier et al. (1988)</td>
</tr>
<tr>
<td>i</td>
<td>S3 aggradation pediplain incision</td>
<td>5–0</td>
<td>200–1000</td>
<td>Sebrier et al. (1988)</td>
</tr>
<tr>
<td>j</td>
<td>River profiles, stratigraphy, sediment yields, cosmogenics</td>
<td>8–0</td>
<td>300–1500</td>
<td>Kober et al. (2006), Schlunegger et al. (2006)</td>
</tr>
</tbody>
</table>

* Keyed to Fig. 8: m = muscovite; b = biotite; fspar = feldspar; kspars = potassium feldspars; hbl = hornblende; wr = whole rock; plag = plagioclase; san = sanidine; gss = glass; gndmss = groundmass; K/Ar = 40K/39Ar; Ar/Ar = 40Ar/39Ar; He = (U–Th)/He, see also abbreviations in Table 2.
5. Discussion

In this section, we integrate the previous synthesis into a synoptic chronology of AP evolution with attention to important inconsistencies. We then evaluate the two AP geologic models and two end member uplift models outlined in Section 3 within the context of this synoptic history and the specific pieces of supporting evidence.

5.1. Synoptic history of Andean Plateau (AP) evolution

Observations constraining the structure, deformation, sedimentation, exhumation, and magmatism produce a chronology that is quite consistent throughout the entire AP from southern Peru to northern Argentina at the plateau scale (10s Myr, 100–1000s km) (Fig. 9; Section 4): (a) Cenozoic exhumation and deformation began along the western AP flank ∼60–40 Ma contemporaneous with an already active late Cretaceous–Eocene volcanic arc, (b) deformation and exhumation propagated into the central EC ∼40 Ma, (c) deformation and exhumation continued throughout the EC until ∼20 Ma concurrent with minor volcanism ∼35–25 Ma, (d) widespread back-arc volcanism resumed ∼25 Ma with deformation and exhumation continuing to propagate eastward into the IA along with limited deformation in the Altiplano from ∼20 to 10–5 Ma, and (e) deformation and exhumation migrated into the SA/SE/SP by ∼15–10 Ma roughly contemporaneous with increased volcanic productivity and a second pulse of exhumation in the EC (∼23–15 Ma to present). One inconsistency is a minor phase of Oligocene (or older) exhumation recorded in the northern IA that is consistent with a recent kinematic reconstruction showing local Eo-Oligocene deformation (McQuarrie et al., 2008a). Small-scale (10s km, Myr) variations to this synoptic history include a sudden deformation shift from the Bolivian WC to EC relative to the subsequent more steady migration eastward (McQuarrie, 2002b; Ege et al., 2007; Barnes et al., 2008) as well as nonsystematic basin fragmentation east of the Puna (Strecker et al., 2009) and unsteady evolution of the Bolivian SA (Uba et al., 2009). Mid-Miocene to recent (∼15–0 Ma) exhumation recorded in the Bolivian EC is considered only the result of enhanced erosion and unassociated with significant deformation (Barnes et al., 2006; Gillis et al., 2006; Barnes et al., 2008; McQuarrie et al., 2008a). In contrast, magnetostratigraphic, seismic, and detrital thermochronologic evidence shows mid-late Miocene to recent (∼20–0 Ma) deformation in the Argentine EC (Fig. 5) (Reynolds et al., 2000; Coutand et al., 2006; Mortimer et al., 2007) and the northern SP (Carrapa et al., 2008): A final inconsistency is that volcanic productivity is not uniform along strike. The volcanic output is higher south of 20°S and decreases in age southward after ∼12 Ma (Trumbull et al., 2006).

The chronology of deformation and exhumation within the Altiplano–Puna basin is generally consistent, but differs in detail along strike. Deformation is documented from ∼30 Ma throughout the Altiplano–Puna, but ceased by ∼8–7 Ma in the Altiplano and continues into the Plio-Quaternary in the Puna (Fig. 5) (Cladouhos et al., 1994; Marrett et al., 1994; Kennan et al., 1995; Lamb and Hoke, 1997; Kraemer et al., 1999; Elger et al., 2005; Schoenbohm and Strecker, 2009). Exhumation may have begun as recently as the Paleocene (∼60 Ma) (Kaminsky et al., 1994; Barnes et al., 2006, 2008). The deformation and exhumation could either not be recorded if the magnitude was insufficient to reset the particular thermochronometer system or the exhumation could continue long after deformation has ceased via protracted erosion which could explain these discrepancies.

The most important observation of the integrated deformation, sedimentation, exhumation, and magmatic history of the AP is that at the plateau scale it is quite uniform along strike and initiated as long ago as the Paleocene (∼60 Ma) (Figs. 5 and 9B,C). This idea challenges the previous notion that deformation and sedimentation was ∼10–5 Myr younger in the EC margin of the Puna compared to the Altiplano.
(e.g., Allmendinger et al., 1997; Jordan et al., 1997; McQuarrie, 2002a). It is particularly interesting that the first exhumation pulse in the EC (~40 Ma) is synchronous along strike and related to deformation, yet the younger pulse in the Puna is older (~23–15 Ma) and also related to deformation, while in the Altiplano it is younger (~15–0 Ma) and associated with enhanced erosion perhaps unrelated to deformation. An emerging view highlights a kinematic shift to extension within the Puna plateau since the late Miocene to Pliocene that continues today (Schoenbohm and Strecker, 2009).

In summary, the synoptic chronology of AP evolution describes a history that is protracted through the Cenozoic (~60–0 Ma) and rather continuous in nature along the entire strike of the plateau spanning ~1500 km.

5.2. Evaluation of the two geologic models for Andean Plateau (AP) development

Comparison with the synoptic chronology of AP evolution is the most direct method for evaluating the punctuated and continuous deformation models outlined in Section 3. The chronology of the punctuated deformation model does not match the synoptic chronology (Section 5.1). The punctuated deformation model chronology needs to be pushed back from initiation at ~27 Ma to initiation ~60–40 Ma to be consistent with deformation, sedimentation, and exhumation observations (Figs. 5 and 9B; Sections 3.1, 4.2, 4.3, and 5.1). Also, the switch in deformation mode from pure to simple shear could have happened anywhere between 20 and 8 Ma (as opposed to ~10 Ma) if it is best represented by the onset of thin-skinned deformation in the SA (Section 4.3). In contrast, the continuous deformation model (as well as the model proposed by Oncken et al. (2006b)) describes deformation beginning ≥~45 Ma which is consistent with the synoptic history.

As proposed in the punctuated deformation model, the required older deformation chronology also implies an equivalent chronologic shift in the reconstruction of previously flat-slab subduction below the plateau and consequently volcanism at the surface. For example, Isacks (1988) proposed flat-slab subduction from ~25–12 Ma and its return to normal subduction ~10 Ma. Now it is proposed that flat-slab subduction was from ~35–25 Ma with its return to normal subduction by ~20 Ma as inferred from volcanic exposures (Figs. 6C and 9C; Section 4.4) (James and Sacks, 1999; Hoke and Lamb, 2007).

The temporal variation in deformation rate is also an important distinction between the two geologic models. At 21°S, Oncken et al. (2006b) documented reduced shortening from 45–33 Ma followed by enhanced shortening from 33–20 Ma. Although this deformation is punctuated, it is not chronologically consistent with the 2 stages of the punctuated model. Estimated shortening rates along strike of the eastern Altiplano flank from 19.5–15°S show a consistent average of ~12–8 mm/yr since ~40 Ma, potentially decreasing to ~4–3 mm/yr depending on the age of SA deformation (~20–0 vs. ~8–0 Ma) (McQuarrie et al., 2005; Barnes et al., 2008; McQuarrie et al., 2008a). This is consistent with the continuous deformation model. However, in detail, there was a reduction/cessation of shortening for 15–5 Myr as inferred from a lack of a thermochronometer cooling signal from ~25 Ma until 20–8 Ma in northern Bolivia (McQuarrie et al., 2008a). In northernmost Argentina, 11–8 mm/yr shortening is inferred to begin in the Subandes at 9 Ma (Echvarria et al., 2003) supporting stage 2 initiation (~10 Ma) of the punctuated deformation model. Along the western flank in the Precordillera in northern Chile, shortening rates range from ~0.05–0.3 mm/yr 30–5 Ma and reach their maximum at ~15–13 Ma (Víctor et al., 2004). This contrast between variable and consistent estimated rates of shortening since ~40 Ma suggests that (a) observation scale is important in determining deformation intensity through time, and (b) the observations can be used to support anything along a continuum from significant to no coupling of upper-plate deformation rate to changes in plate convergence magnitude and direction since ~40 Ma (Fig. 1A) (e.g., Pardo-Casas and Molnar, 1987; Hindle et al., 2002; Oncken et al., 2006a). At the AP scale (10s Myr and 100–1000s km) the constraints suggest a constant rate of ~12–8 mm/yr since ~40 Ma (Section 4.2).

In conclusion, continuous deformation is the preferred geologic model because it is most consistent with the observations as represented by the synoptic history of AP evolution (compare Sections 3.2 and 5.1).

5.3. Evaluation of the recent and rapid uplift model

Overall, the rapid rise end member uplift model is not well supported by the evidence, but some observations are consistent with it. As outlined in Section 3.3, the recent and rapid uplift model proposes rapid uplift of ~2.5 km from 10–6 Ma and predicts contemporaneous plateau flank incision, cessation of deformation within the plateau, decrease in Nazca–South America plate convergence rates, and initial deformation in the SA (Gargini et al., 2006; Ghosh et al., 2006; Garzione et al., 2008b). Supporting evidence for this model includes: (1) ~1.7 km of rock uplift of the EC in southern Bolivia since 12–9 Ma (Figs. 7 and 9D; Section 4.5) (Barke and Lamb, 2006), (2) eruption of mafic lavas in the north-central Altiplano ~7.5–5.5 Ma reflecting a minimum delamination age (Lamb and Hoke, 1997; Carlier et al., 2005), (3) cessation of shortening in the Altiplano ~8–7 Ma (Fig. 5; Section 5.1) (Kennan et al., 1993; Lamb and Hoke, 1997; Eiger et al., 2005), (4) a plate convergence rate drop of ~30% ~8–5 Ma (Garzione et al., 2006), and (5) initial SA deformation at ~9–8 Ma in northern Argentina/southernmost Bolivia (Fig. 5; Tables 2 and 3) (Echvarria et al., 2003; Scheuber et al., 2006). Evidence that is ambiguous because there are multiple possible causes (i.e. surface uplift or climate change) are: (1) the paleoaltimetry data indicating low elevations of ~1 km since ~25 Ma followed by ~2.5 km of surface uplift 10–6 Ma (Figs. 7 and 9D; Section 4.5) (e.g. Garzione et al., 2008b) and (2) significant (2.5–1 km) late Miocene-to-recent (~10–0 Ma) incision of the western plateau flank (Figs. 8 and 9E; Section 4.6) (e.g. Hoke et al., 2007; Schildgen et al., 2007).

Many observations and key interpretations are not consistent with the rapid rise model. The previously described synoptic history of AP evolution attests to significant deformation, sedimentation, and exhumation throughout wide regions within and along the plateau margins >10 Ma which argues for substantial crustal thickness prior to this time (Figs. 5 and 9B; Sections 4.2–4.3) (see also Sempere et al., 2006; Hartley et al., 2007). Oligocene (~25 Ma) volcanics along both AP margins (Wörner et al., 2002; Barke et al., 2007) indicate significant heat and crustal sources associated with a thickened crust and thin lithosphere (possibly with associated isostatic uplift) were already in place by ~25 Ma (Figs. 6C and 9C; Section 4.4) (Babyeko et al., 2002; Hartley et al., 2007; Hoke and Lamb, 2007). This implies that by ~20 Ma the AP had a thickened crust which may have had a higher density, mafic lower crust and/or mantle lithosphere that, in turn, may have already been removed by ablation or some form of delamination. If the onset of mafic volcanism is a proxy for delamination, then it is chronologically inconsistent with uplift at 10 Ma in both the Altiplano (onset at ~25 Ma; Fig. 6C) and Puna (onset at ~3 Ma) (see Section 4.4) (e.g. Kay et al., 1994; Hoke and Lamb, 2007). In detail, numerous mafic eruptions within the Altiplano might actually represent multiple, minor delamination events at 25, 21, 14–11, and 4–0 Ma (Fig. 6C) (Hoke and Lamb, 2007) which is more consistent with piecemeal lithospheric removal. The noted 7.5–5.5 Ma mafic volcanics erupted throughout the northern and central Altiplano are actually andesitic and lack the geochemical signature of delamination magnetism (Hartley et al., 2007). Furthermore, one study indicates young Pliocene deformation in the Puna (Fig. 5A, Table 2) (Marrett et al., 1994), some studies suggest the SA may have initiated before 10 Ma (Fig. 5B, Table 3) (Barnes et al., 2006, 2008; Ula et al., 2005), and young exhumation in the EC, southern Puna and SP began prior to the supposed uplift at ~23–11 Ma (Carrapa et al., 2006; Deeken et al., 2006; Gillis et al., 2006; Barnes et al., 2008; Carrapa et al., 2006; Ula et al., 2005).
2008). Finally, the modern and spatially variable thickness of the lithosphere below the AP is inconsistent with massive removal at 10 Ma (Section 4.1.2).

In conclusion, the recent and rapid uplift model is not consistent with the preferred geologic model and inconsistent with many observations.

5.4. Evaluation of the slow and steady uplift model

Overall, the slow rise end member uplift model is more consistent with the evidence. As introduced in Section 3.4, the slow and steady uplift model proposes linear uplift of the ~4 km plateau over the ~60–40 Myr history of central Andean orogenesis. Supporting evidence and key interpretations for this model includes: (1) the preferred geologic model of continuous deformation because it proposes protracted and mostly steady deformation (Sections 3.2 and 5.2) (e.g. McQuarrie et al., 2005), (2) the synoptic chronology of AP evolution because it describes a similar long history of deformation, exhumation, and sedimentation that is quite uniform over the scale of the AP (Section 5.1) (e.g. DeCelles and Horton, 2003; Barnes et al., 2008; Carrapa and DeCelles, 2008), (3) variable thicknesses in plateau lithosphere with some thin regions below the AL–EC transition today (perhaps in the process of delaminating) (Fig. 2D; Section 4.1.2) (e.g. Beck and Zandt, 2002), and (4) magmatism and helium emissions that suggest the AP lithosphere has been thin since ~25 Ma (Figs. 6C and 9C, Section 4.4) (Hoke and Lamb, 2007). The ambiguous evidence from the paleoaltimetry data is consistent with slow and steady rise since ≥~25 Ma if a more conservative analysis of the data and/or a paleoaltimetric correction is applied in order to account for plateau uplift-induced climate change (Figs. 7B and 9D; Section 4.5) (Ehlers and Poulsen, 2008). Additionally, the ambiguous evidence of significant late Miocene-to-recent (2.5–1 km, ~10–0 Ma) incision of the western plateau flank (Figs. 8 and 9E; Section 4.6) (e.g. Hoke et al., 2007; Schildgen et al., 2007) could also be consistent with a slow rise if the mechanism for the incision was climate change. Finally, some observations that support the rapid rise model, such as SA initiation at ~9 Ma in northern Argentina (Echarvarria et al., 2003) and late Miocene to recent EC rock uplift (~10–0 Ma, 1.7±0.7 km) in southern Bolivia (Barke and Lamb, 2006), are not necessarily inconsistent, within error, with the slow and steady uplift model (which implies ~1 km uplift/10 Myr).

In conclusion, the slow and steady uplift model is consistent with the preferred geologic model, more of the observations as encapsulated by the synoptic history of AP evolution, and also consistent with the paleoaltimetry and incision data given more conservative and/or alternative interpretations.

6. Comparison of Andean observations with geodynamic models

Many studies have used numerical models to gain insight into plateau formation processes and uplift often with application to the AP (Table 7). For example, (a) various calculations and 1D models provide bounds on the feasibility of geodynamic processes such as mantle convection, delamination, and crustal flow (e.g. Bird, 1979; Husson and Sempere, 2003; Molnar and Garzione, 2007), (b) 2D thin sheet models with viscoplastic rheologies help determine important factors controlling deformation in the South American plate (e.g. Husson and Ricard, 2004; Medvedev et al., 2006; Sobolev et al., 2006), and (c) 2–3D thermo and/or thermo-mechanical models with differing rheologies provide insight into the nature of coupling within and between the crust and mantle during orogenesis as well as further explore conditions necessary to facilitate processes like lower crustal flow or delamination (e.g. Wdowinski and Bock, 1994b; Pope and Willett, 1998; Springer and Forster, 1998). While most models predict mean AP elevation consistent with modern values, several chose less shortening than the total inferred amount in the Altiplano (Fig. 1A; ~500 km) (McQuarrie, 2002a) as well as less than ~60–40 Myr for the deformation duration (Sections 4 and 5). However, most models did prescribe the amount of shortening observed (~300–350 km). A few studies ran contrasting simulations of short and long (~25 and ~70 Myr) deformation in which the longer duration result intuitively predicted a more gradual rise from 2 km elevation ~25 Ma (Yang et al., 2003). Two studies focused on plateau evolution over only the last 10 Myr (Babeyko et al., 2006; Iaffaldano et al., 2006). Several models that include delamination predict a recent uplift history consistent with late Miocene rapid surface uplift. Finally, models predict both young (~10 Ma) and old (~20–15 Ma) establishment of the modern AP width, the latter consistent with interpretations of the documented structure, deformation, and exhumation (Section 4.3). Interestingly, many models did not include erosion.

The most important insight from the numerical models is that a weakened lithosphere is important for plateau development by resulting in slow in flow at depth (Table 7) (e.g. Pope and Willett, 1998; Beaumont et al., 2001; Willett and Pope, 2004; Vietor and Oncken, 2005; Babeyko et al., 2006; Medvedev et al., 2006). It may also be important that many AP numerical modeling studies under–simulated both the documented duration of deformation (<~30 vs. ~60–40 Ma) and the maximum inferred magnitude of shortening (~530 vs. ~330 km) (Table 8) (Husson and Ricard, 2004; Wdowinski and Bock, 1994b; Sobolev and Babeyko, 2005; Sobolev et al., 2006). This could have a profound effect on results and any associated interpretations, particularly with models used to differentiate between the end member uplift histories.

7. Deficiencies in knowledge and future tests of uplift models

There are several potentially fruitful lines of future research to better constrain AP evolution and uplift. The synchronicity of deformation, sedimentation, and exhumation from northern Bolivia to Argentina implies a similar history for the northern portion of the AP in southern Peru, but observations are limited (Fig. 5). Results from such studies, as well as balanced cross sections and kinematic reconstructions, along the northernmost Altiplano flanks could (a) test the hypothesis that upper-crustal deformation in the AP is chronologically uniform along strike, (b) determine how the east-flanking thrust belt is linked to the AP, and (c) provide insight into how the structural and stratigraphic architecture might vary northward (e.g. Gotberg et al., in press). Shallow geophysical studies across the same region as well as the Bolivian Altiplano could address the controversy surrounding the geometry of basement-involved structures that link the AP to the eastern margin thrust belt.
Table 7
Geodynamic models of plateau development with particular focus on the Andean Plateau.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Model type</th>
<th>Assumptions</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bird (1979)</td>
<td>1D viscous</td>
<td>t dependant, vertical conduit, low visc</td>
<td>Colorado Plateau mantle convection and delamination</td>
<td>Predicts basalt/granite magmatism</td>
</tr>
<tr>
<td>Wdowinski and Bock</td>
<td>2D</td>
<td>t dependant, power-law rheology</td>
<td>AP topography from thermal perturbation</td>
<td>5±1 thermal weakening since late Oligocene needed</td>
</tr>
<tr>
<td>Royden (1996)</td>
<td>3D</td>
<td>d dependant visc, coupled/decoupled crust modes</td>
<td>Tibetan Plateau: decoupled crust</td>
<td>Crust decoupling at arbitrary 55 km thickness</td>
</tr>
<tr>
<td>Royden et al. (1997)</td>
<td>2D viscous</td>
<td>t dependant and power-law rheology, ablative subduction</td>
<td>AP-like: high t, low visc lwr-crustal flow</td>
<td>Crustal flow due to high heat prod upper crust</td>
</tr>
<tr>
<td>Pope and Willett (1998)</td>
<td>2D viscous</td>
<td>p dependant and power-law rheology, denudation</td>
<td>TP: coupled crust flow and focused erosion</td>
<td>Extra upper crust “melt weakening” by factor of 10</td>
</tr>
<tr>
<td>Beaumont et al. (2001, 2004)</td>
<td>2D viscous</td>
<td>t and strain rate dependant power-law rheology</td>
<td>AP: additional mantle heat required for crustal melt</td>
<td>Includes crustal magmatic intrusions</td>
</tr>
<tr>
<td>Babeyko et al. (2002)</td>
<td>1D viscous</td>
<td>t dependant and power-law rheology</td>
<td>E-W directed lateral crust flow thickens Altiplano</td>
<td>Channel viscosity is crust thickness dependant</td>
</tr>
<tr>
<td>Hussin and Sampero (2003)</td>
<td>2D viscous</td>
<td>t dependant and power-law rheology</td>
<td>plateau morph via ablation, mantle subduction/shear</td>
<td>Plateau elev due to crustal strength, thickness, and t</td>
</tr>
<tr>
<td>Yang et al. (2003)</td>
<td>3D viscous</td>
<td>Elastic effects negligible, thermally weak crustal zone</td>
<td>Reproduces AP shortening rates, crust thickness</td>
<td>Intraplate coupling drives uppper plate deformation</td>
</tr>
<tr>
<td>Willet and Pope (2004)</td>
<td>2D viscous</td>
<td>t dependant visc, power-law rheology</td>
<td>AP: stress magnitude unsufficient to explain elev</td>
<td>Topography is only isostatic, neglects erosion/delam</td>
</tr>
<tr>
<td>Yanez and Cembrano (2004)</td>
<td>2D viscous</td>
<td>t and strain rate dependant power-law rheology</td>
<td>AP: south to north lower crust flow</td>
<td>Crustal flow does not produce surface deformation</td>
</tr>
<tr>
<td>Husson and Ricard (2004)</td>
<td>2D viscosheet</td>
<td>Intraplate traction, basal drag, mass conservation</td>
<td>AP: shear-stress decoupled crust gets plateau morph</td>
<td>Implies lower crust heat heating important for AP</td>
</tr>
<tr>
<td>Gerbault et al. (2005)</td>
<td>2D viscosheet</td>
<td>t dependant and power-law rheology</td>
<td>AP: deformation modes due to failure of Paleoiz seds</td>
<td>Sedimentary failure reduces lith shortening force</td>
</tr>
<tr>
<td>Vietor and Oncken (2005)</td>
<td>2D plastic</td>
<td>Coulomb behavior with strain-softening</td>
<td>AP: lots of shortening and delam of upper plate</td>
<td>Slab geometry constant, fixed gabro-eclogite trans.</td>
</tr>
<tr>
<td>Babeyko and Sobolev (2005)</td>
<td>2D viscous</td>
<td>t and strain rate dependant power-law rheology</td>
<td>Predicted AP plate motions since 10 Ma</td>
<td>Implies topography can control plate motion</td>
</tr>
<tr>
<td>Sobolev and Babeyko (2005)</td>
<td>2D viscous</td>
<td>t and strain rate dependant power-law rheology</td>
<td>AP: 4 processes control upper plate strength</td>
<td>Andes lithosphere 5–15x weaker than Brazilian craton</td>
</tr>
<tr>
<td>Iaflaldane et al. (2006)</td>
<td>2D plate</td>
<td>Tectonic thickening, gravity spreading, crustal flow</td>
<td>AP: crustal flow leads to flat topography</td>
<td>Internal weakening processes of upper plate important</td>
</tr>
<tr>
<td>Medvedev et al. (2006)</td>
<td>2D plate</td>
<td>t and strain rate dependant power-law rheology</td>
<td>AP: crustal flow leads to flat topography</td>
<td>Delam and foreland sed failure reduce upper plate strength</td>
</tr>
<tr>
<td>Babeyko et al. (2006)</td>
<td>2D plate</td>
<td>t and strain rate dependant power-law rheology</td>
<td>Westward drift of SA plate controls shortening</td>
<td>Predicts Miocene rapid uplift without delam</td>
</tr>
<tr>
<td>Sobolev et al. (2006)</td>
<td>2D plate</td>
<td>t and strain rate dependant power-law rheology</td>
<td>Miocene aridity decreases convergence</td>
<td>Infers increasing trench coupling to be important</td>
</tr>
<tr>
<td>Meade and Conrad (2008)</td>
<td>2D viscosheet</td>
<td>Frictional wedge, steady state, fluvial erosion</td>
<td>Miocene plate thickens Altiplano</td>
<td></td>
</tr>
<tr>
<td>Luo and Liu (2009)</td>
<td>2D viscosheet</td>
<td>Force balance and Mohr-Coulomb yield criteria</td>
<td>GPS shortening is transient except in Subanes</td>
<td></td>
</tr>
</tbody>
</table>

t = temperature; d = depth; vert. = vertical; visc = viscosity; lith = lithosphere; AP = Andean Plateau; TP = Tibetan Plateau; morph = morphology; prod = production; lwr = lower; uppr = upper; trans. = transformation sed = sediments; elev = elevation; delam = delamination; SA = South America; Paleoiz = Paleozoic.

There are several ways to test the two end member uplift models for the AP. First, the prediction of initial and increased shortening in the Subandes at ~10 Ma contemporaneous with uplift by the recent and rapid model can be tested by better quantification of SA deformation and exhumation throughout Bolivia and Peru. Second, ore, oxygen, and clumped 13C–18O isotope data need to be collected from various paleosols north and south of the current location at 18°S (numbers 13–18 in Fig. 7) as well as more in older (>10 Ma) sediments to better delimit the Eocene-to-recent plateau elevation history. Fig. 4 shows previously studied and dated sediments that could be sampling targets for such studies. This would test the hypothesis implied by both uplift models that deformation, exhumation, and perhaps surface elevation was synchronous throughout the entire Altiplano or not. Indeed, the hypothesis that delamination in the Puna occurred ~3 Ma from the onset of regional mafic magmas (Kay and Mahlburg Kay, 1993) implies much more recent uplift than even proposed by the rapid rise uplift model. Isotope paleoaltimetry data in the Puna could also test this hypothesis.

Additional avenues of future research include expanding the regional paleoclimate record back into the early Miocene or even earlier. This would allow (a) evaluation of the assumption of the modern climate being representative of the past as assumed by the paleoaltimetry data, (b) decipher whether incision records may reflect a climatic change trigger as opposed to delamination-driven surface uplift, and (c) evaluation and/or benchmarking of global-to-regional scale modeling of central South American climate history. Expansion of geophysical studies to determine the lithospheric structure below the Puna, Argentine EC, and northern Altiplano in Peru would go a long way towards along-strike substantiation or contradiction of the current tomography-driven interpretations of the mantle lithosphere below the central Altiplano. Finally, numerical simulations constrained by observations synthesized in this paper could be used to address questions such as: (1) What uplift histories are most consistent with the observed magnitudes, rates, and timing of deformation, shortening, and magmatism across the AP? (2) How unique is the mechanism of mantle delamination to the possible late Miocene rapid surface uplift history? (3) Has erosion limited thrust belt propagation (and effectively plateau width) as suggested? (e.g. Masek et al., 1994; Horton, 1999; McQuarrie et al., 2008b), and (4) Does any important geodynamic process (i.e. crustal flow, ablative subduction, eclogitization of the lower crust and delamination) produce any other unique and identifiable evidence in the near surface that geoscientists can hope to observe in the field or sense remotely?

8. Conclusions

We conclude by listing a series of observations and key inferences consistent across many investigations presented in our synthesis. This
list is presented to identify what can be said with confidence concerning the Cenozoic structure and geologic evolution of the Andean Plateau, providing a test for evaluating future models of central Andes orogenesis. More specifically, any model that attempts to explain Andean Plateau development must honor the following (Fig. 9):

A. Lithosphere (Fig. 9A): a crust exhibiting significant yet variable along-strike shortening (~330–150 km) with a west-dipping monocline on the western flank and dominantly east-vergent thrust belt involving basement-to-cover rocks in the center to eastern flank (Fig. 2D). A plateau region possessing a positive geoid, a negative Bouguer gravity anomaly, low rigidity, high heat flow, and an isotastically compensated thick crust (~80–65 km). In contrast, plateau margins exhibiting progressively thinner crust, reduced heat flow, and an increasingly rigid lithosphere away from the center. A lithosphere with an east-dipping high velocity zone down to 660 km corresponding to the subducting Nazca plate, variable velocity zones and high attenuation in the crust and upper mantle, and a high velocity mantle beneath the Eastern Cordillera corresponding to the under-thrusting Brazilian craton (Fig. 2D).

B. Deformation and exhumation (Fig. 9B): a mostly continuous Cenozoic deformation, sedimentation, and exhumation history that progresses dominantly eastward since the Paleogene–Eocene (~60–40 Ma). More specifically, initial deformation and exhumation began along the western flank at ~60–40 Ma with a shift into the Eastern Cordillera ~40 Ma. Continued and distributed Eastern Cordillera deformation from ~40–20 Ma was followed by propagation eastward into the Interandean zone and westward in the Altiplano from ~20 Ma until 10–5 Ma. The modern width of the Andean Plateau is inferred to be reached by 25–15 Ma. Deformation and exhumation propagated eastward into the Subandes/Santa Barbara Ranges/Sierras Pampeanas at ~15–10 Ma where it continues today. A younger phase of early–mid Miocene to present (~23–0 Ma) exhumation in the Eastern Cordillera was probably the result of enhanced erosion along the northern Altiplano flank and related to deformation along the southern Puna flank. The 3-dimensional deformation field of the AP is characterized by rotation outward from the orocline axis.

C. Magmatism (Fig. 9C): Cenozoic volcanism began in the Western Cordillera and continued until ~35 Ma. Widespread back-arc, mafic-to-rhyolitic volcanism began again at ~25 Ma across a ~300 km wide (W–E) zone within the central Altiplano. Arc productivity has been higher south of ~20°S and has also decreased in age southward since ~12 Ma. The widespread volcanism only recently retreated to its present and narrow (~50 km W–E) zone in the Western Cordillera ~3 Ma. This volcanism infers a) a thin Altiplano lithosphere (~100 km thick) since ~25 Ma and b) a history of changing subduction geometry from normal to flat and back to normal during the Cenozoic. Onset of mafic magmatism at ~3 Ma in the Puna may be the result of recent delamination and the cause of its higher mean elevation relative to the Altiplano.

D. Uplift (Fig. 9D): most surface uplift from an initial elevation of ~1 km has occurred since ~25 Ma. Within error, paleoaltimetry data are equally consistent with anything from a slow and steady rise of the AP since ~25 Ma to a rapid rise of ~25 km at ~10–6 Ma. Much of the paleoaltimetry data can be explained by either surface uplift and/or climate change associated with plateau uplift.

E. Incision (Fig. 9E): significant late Miocene incision (2.5–1 km since ~11–8 Ma) has occurred along the Altiplano western flank with more minor incision both prior to this time and along the eastern plateau flank. The incision mechanism is unclear and could be surface uplift and/or climate change associated with plateau uplift. In contrast, there is no evidence for significant incision along the southeastern Puna margin.

F. Modeling: models of Andean Plateau formation suggest that a weakened lithosphere resulting in flow at depth is important in the geodynamic evolution of the plateau.

A major interpretation drawn from this synthesis is a synoptic history of Andean Plateau evolution that describes significant, yet variable upper-plate deformation (~530–150 km shortening) within a weak lithosphere that was protracted (~40 Myr since deformation
and magmatism began, ~25 Myr since the lithosphere was thin in places (~100 km thick)) and more uniform in time along strike (~1500 km) than previously appreciated. This synoptic history is more consistent with a geologic model of relatively continuous deformation and an end member model of Andean Plateau uplift that emphasizes a slow and steady rise since the Eocene (~40 Ma) or even earlier. Therefore, we suggest the late Miocene (~10 Ma) rapid uplift model may be an overestimate and that a protracted Cenozoic uplift history is tenable.

Acknowledgements

Financial support was provided to J. Barnes by a University of Michigan Rackham Graduate School Predoctoral Fellowship and to T. Ehlers by NSF grants EAR 0409289 and 0738822. We thank Sohrab Tawackcoli for his scientific and logistical help working in Bolivia over the years. We thank Jeroen Ritsema for discussions on caveats associated with seismic data and Nadine McQuarrie and Brian Horton for discussions on the relationships between upper-crust structure, sedimentation, and exhumation in Bolivia. Chris Poulsen, Rob Van Der Voo, Larry Ruff, and Nadine McQuarrie provided insightful comments on an earlier version of this paper. Comments from three anonymous reviewers helped improve this manuscript. This work would not have been possible without the extensive efforts by European, North American, and South American scientists on the central Andes.

References

McQuarrie, N., 2002b. The kinematic history of the central Andean fold.

